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Preface

This document provides the theoretical basis for the Fire Dynamics Simulator (FDS), following the general
framework set forth in the “Standard Guide for Evaluating the Predictive Capability of Deterministic Fire
Models,” ASTM E 1355 [1]. It is the first of a four volume set of companion documents, referred to
collectively as the FDS Technical Reference Guide [2]. Volumes 2, 3 and 4 describe the model verification,
experimental validation, and configuration management, respectively.

A separate document, Fire Dynamics Simulator, User’s Guide [3] describes how the FDS software is
actually used.
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Disclaimer

The US Department of Commerce makes no warranty, expressed or implied, to users of the Fire Dynamics
Simulator (FDS), and accepts no responsibility for its use. Users of FDS assume sole responsibility under
Federal law for determining the appropriateness of its use in any particular application; for any conclusions
drawn from the results of its use; and for any actions taken or not taken as a result of analysis performed
using these tools.

Users are warned that FDS is intended for use only by those competent in the fields of fluid dynamics,
thermodynamics, heat transfer, combustion, and fire science, and is intended only to supplement the in-
formed judgment of the qualified user. The software package is a computer model that may or may not have
predictive capability when applied to a specific set of factual circumstances. Lack of accurate predictions
by the model could lead to erroneous conclusions with regard to fire safety. All results should be evaluated
by an informed user.

Throughout this document, the mention of computer hardware or commercial software does not con-
stitute endorsement by NIST, nor does it indicate that the products are necessarily those best suited for the
intended purpose.
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Chapter 1

Introduction

Howard Baum, NIST Fellow Emeritus

The idea that the dynamics of a fire might be studied numerically dates back to the beginning of the com-
puter age. Indeed, the fundamental conservation equations governing fluid dynamics, heat transfer, and
combustion were first written down over a century ago. Despite this, practical mathematical models of fire
(as distinct from controlled combustion) are relatively recent due to the inherent complexity of the problem.
Indeed, in his brief history of the early days of fire research, Hoyt Hottel noted “A case can be made for fire
being, next to the life processes, the most complex of phenomena to understand” [4].

The difficulties revolve about three issues: First, there are an enormous number of possible fire scenarios
to consider due to their accidental nature. Second, the physical insight and computing power required to
perform all the necessary calculations for most fire scenarios are limited. Any fundamentally based study
of fires must consider at least some aspects of bluff body aerodynamics, multi-phase flow, turbulent mixing
and combustion, radiative transport, and conjugate heat transfer; all of which are active research areas in
their own right. Finally, the “fuel” in most fires was never intended as such. Thus, the mathematical models
and the data needed to characterize the degradation of the condensed phase materials that supply the fuel
may not be available. Indeed, the mathematical modeling of the physical and chemical transformations of
real materials as they burn is still in its infancy.

In order to make progress, the questions that are asked have to be greatly simplified. To begin with,
instead of seeking a methodology that can be applied to all fire problems, we begin by looking at a few
scenarios that seem to be most amenable to analysis. Hopefully, the methods developed to study these “sim-
ple” problems can be generalized over time so that more complex scenarios can be analyzed. Second, we
must learn to live with idealized descriptions of fires and approximate solutions to our idealized equations.
Finally, the methods should be capable of systematic improvement. As our physical insight and computing
power grow more powerful, the methods of analysis can grow with them.

To date, three distinct approaches to the simulation of fires have emerged. Each of these treats the
fire as an inherently three dimensional process evolving in time. The first to reach maturity, the “zone”
models, describe compartment fires. Each compartment is divided into two spatially homogeneous volumes,
a hot upper layer and a cooler lower layer. Mass and energy balances are enforced for each layer, with
additional models describing other physical processes appended as differential or algebraic equations as
appropriate. Examples of such phenomena include fire plumes, flows through doors, windows and other
vents, radiative and convective heat transfer, and solid fuel pyrolysis. Descriptions of the physical and
mathematical assumptions behind the zone modeling concept are given in separate papers by Jones [5] and
Quintiere [6], who chronicle developments through 1983. Model development since then has progressed to
the point where documented and supported software implementing these models are widely available [7].

The relative physical and computational simplicity of the zone models has led to their widespread use in
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the analysis of fire scenarios. So long as detailed spatial distributions of physical properties are not required,
and the two layer description reasonably approximates reality, these models are quite reliable. However, by
their very nature, there is no way to systematically improve them. The rapid growth of computing power
and the corresponding maturing of computational fluid dynamics (CFD), has led to the development of CFD
based “field” models applied to fire research problems. Virtually all this work is based on the conceptual
framework provided by the Reynolds-averaged form of the Navier-Stokes equations (RANS), in particular
the k−ε turbulence model pioneered by Patankar and Spalding [8]. The use of CFD models has allowed the
description of fires in complex geometries, and the incorporation of a wide variety of physical phenomena.
However, these models have a fundamental limitation for fire applications – the averaging procedure at the
root of the model equations.

RANS models were developed as a time-averaged approximation to the conservation equations of fluid
dynamics. While the precise nature of the averaging time is not specified, it is clearly long enough to require
the introduction of large eddy transport coefficients to describe the unresolved fluxes of mass, momentum
and energy. This is the root cause of the smoothed appearance of the results of even the most highly resolved
fire simulations. The smallest resolvable length scales are determined by the product of the local velocity
and the averaging time rather than the spatial resolution of the underlying computational grid. This property
of RANS models is typically exploited in numerical computations by using implicit numerical techniques
to take large time steps.

Unfortunately, the evolution of large eddy structures characteristic of most fire plumes is lost with
such an approach, as is the prediction of local transient events. It is sometimes argued that the averaging
process used to define the equations is an “ensemble average” over many replicates of the same experiment
or postulated scenario. However, this is a moot point in fire research since neither experiments nor real
scenarios are replicated in the sense required by that interpretation of the equations. The application of
“Large Eddy Simulation” (LES) techniques to fire is aimed at extracting greater temporal and spatial fidelity
from simulations of fire performed on the more finely meshed grids allowed by ever faster computers.

The phrase LES refers to the description of turbulent mixing of the gaseous fuel and combustion prod-
ucts with the local atmosphere surrounding the fire. This process, which determines the burning rate in
most fires and controls the spread of smoke and hot gases, is extremely difficult to predict accurately. This
is true not only in fire research but in almost all phenomena involving turbulent fluid motion. The basic
idea behind the LES technique is that the eddies that account for most of the mixing are large enough to be
calculated with reasonable accuracy from the equations of fluid dynamics. The hope (which must ultimately
be justified by comparison to experiments) is that small-scale eddy motion can either be crudely accounted
for or ignored.

The equations describing the transport of mass, momentum, and energy by the fire-induced flows must
be simplified so that they can be efficiently solved for the fire scenarios of interest. The general equations of
fluid dynamics describe a rich variety of physical processes, many of which have nothing to do with fires.
Retaining this generality would lead to an enormously complex computational task that would shed very
little additional insight on fire dynamics. The simplified equations, developed by Rehm and Baum [9], have
been widely adopted by the larger combustion research community, where they are referred to as the “low
Mach number” combustion equations. They describe the low speed motion of a gas driven by chemical
heat release and buoyancy forces. Oran and Boris provide a useful discussion of the technique as applied
to various reactive flow regimes in the chapter entitled “Coupled Continuity Equations for Fast and Slow
Flows” in Ref. [10]. They comment that “There is generally a heavy price for being able to use a single
algorithm for both fast and slow flows, a price that translates into many computer operations per time step
often spent in solving multiple and complicated matrix operations.”

The low Mach number equations are solved numerically by dividing the physical space where the fire
is to be simulated into a large number of rectangular cells. Within each cell the gas velocity, temperature,
etc., are assumed to be uniform; changing only with time. The accuracy with which the fire dynamics can
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be simulated depends on the number of cells that can be incorporated into the simulation. This number is
ultimately limited by the computing power available. Present day, single processor desktop computers limit
the number of such cells to at most a few million. This means that the ratio of largest to smallest eddy
length scales that can be resolved by the computation (the “dynamic range” of the simulation) is on the
order of 100. Parallel processing can be used to extend this range to some extent, but the range of length
scales that need to be accounted for if all relevant fire processes are to be simulated is roughly 104 to 105

because combustion processes take place at length scales of 1 mm or less, while the length scales associated
with building fires are of the order of tens of meters. The form of the numerical equations discussed below
depends on which end of the spectrum one wants to capture directly, and which end is to be ignored or
approximated.
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Chapter 2

Model Overview

This chapter presents general information about the Fire Dynamics Simulator, following the basic frame-
work set forth in ASTM E 1355 [1].

2.1 Basic Description of FDS

2.1.1 Type of Model

FDS is a Computational Fluid Dynamics (CFD) model of fire-driven fluid flow. The model solves nu-
merically a form of the Navier-Stokes equations appropriate for low-speed, thermally-driven flow with an
emphasis on smoke and heat transport from fires. The partial derivatives of the conservation equations of
mass, momentum and energy are approximated as finite differences, and the solution is updated in time
on a three-dimensional, rectilinear grid. Thermal radiation is computed using a finite volume technique
on the same grid as the flow solver. Lagrangian particles are used to simulate smoke movement, sprinkler
discharge, and fuel sprays.

Smokeview is a companion program to FDS that produces images and animations of the results. In
recent years, its developer, Glenn Forney, has added to Smokeview the ability to visualize fire and smoke in
a fairly realistic way. In a sense, Smokeview now is, via its three-dimensional renderings, an integral part of
the physical model, as it allows one to assess the visibility within a fire compartment in ways that ordinary
scientific visualization software cannot.

Although not part of the FDS/Smokeview suite maintained at NIST, there are several third-party and
proprietary “add-ons” to FDS either available commercially or privately maintained by individual users.
Most notably, there are several Graphical User Interfaces (GUIs) that can be used to create the input file
containing all the necessary information needed to perform a simulation.

2.1.2 Version History

Version 1 of FDS was publicly released in February 2000, version 2 in December 2001, version 3 in Novem-
ber 2002, and version 4 in July 2004. The present version of FDS is 5, first released in October, 2007.

Starting with FDS 5, a formal revision management system has been implemented to track changes
to the FDS source code. The open-source program development tools are provided by an Internet-based
organization known as Google Code (code.google.com).

The version number for FDS has three parts. For example, FDS 5.2.12 indicates that this is FDS 5, the
fifth major release. The 2 indicates a significant upgrade, but still within the framework of FDS 5. The 12
indicates the twelveth minor upgrade of 5.2, mostly bug fixes and minor user requests.
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2.1.3 Model Developers

Currently, FDS is maintained by the Building and Fire Research Laboratory (BFRL) of National Institute
of Standards and Technology. The developers at NIST have formed a loose collaboration of interested
stakeholders, including:

• VTT Technical Research Centre of Finland, a research and testing laboratory similar to NIST

• The Society of Fire Protection Engineers (SFPE) who conduct training classes on the use of FDS

• Fire protection engineering firms that use the software

• Engineering departments at various universities with a particular emphasis on fire

BFRL awards grants on a competitive basis to external organizations who conduct research in fire science
and engineering. Some of these grants have been used to assist the development of FDS. The role of the
grantee in supporting day to day development varies. Not all of the developers outside of NIST are grantees.

Starting with Version 5, the FDS development team uses an Internet-based development environment
called GoogleCode, a free service of the search engine company, Google. GoogleCode is a widely used
service designed to assist open source software development by providing a repository for source code,
revision control, program distribution, bug tracking, and various other very useful services.

Each member of the FDS development team has an account and password access to the FDS repository.
In addition, anonymous access is available to all interested users, who can receive the latest versions of the
source code, manuals, and other items. Anonymous users simply do not have the power to commit changes
to any of these items. The power to commit changes to FDS or its manuals can be granted to anyone on a
case by case basis.

The FDS manuals are typeset using LATEX, specifically, PDF LATEX. The LATEXfiles are essentially text
files that are under SVN (Subversion) control. The figures are either in the form of PDF or jpeg files,
depending on whether they are vector or raster format. There are a variety of LATEXpackages available,
including MiKTeX. The FDS developers edit the manuals as part of the day to day upkeep of the model.
Different editions of the manuals are distinguished by date.

2.1.4 Intended Uses

Throughout its development, FDS has been aimed at solving practical fire problems in fire protection engi-
neering, while at the same time providing a tool to study fundamental fire dynamics and combustion. FDS
can be used to model the following phenomena:

• Low speed transport of heat and combustion products from fire

• Radiative and convective heat transfer between the gas and solid surfaces

• Pyrolysis

• Flame spread and fire growth

• Sprinkler, heat detector, and smoke detector activation

• Sprinkler sprays and suppression by water

Although FDS was designed specifically for fire simulations, it can be used for other low-speed fluid flow
simulations that do not necessarily include fire or thermal effects. To date, about half of the applications
of the model have been for design of smoke control systems and sprinkler/detector activation studies. The
other half consist of residential and industrial fire reconstructions.
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2.1.5 Input Parameters

All of the input parameters required by FDS to describe a particular scenario are conveyed via a single
text file created by the user. The file contains information about the numerical grid, ambient environment,
building geometry, material properties, combustion kinetics, and desired output quantities. The numeri-
cal grid consists of one or more rectilinear meshes with (usually) uniform cells. All geometric features
of the scenario must conform to this numerical grid. Objects smaller than a single grid cell are either ap-
proximated as a single cell, or rejected. The building geometry is input as a series of rectangular blocks.
Boundary conditions are applied to solid surfaces as rectangular patches. Materials are defined by their
thermal conductivity, specific heat, density, thickness, and burning behavior. There are various ways that
this information is conveyed, depending on the desired level of detail.

Any simulation of a real fire scenario involves specifying material properties for the walls, floor, ceiling,
and furnishings. FDS treats all of these objects as multi-layered solids, thus the physical parameters for
many real objects can only be viewed as approximations to the actual properties. Describing these materials
in the input file is the single most challenging task for the user. Thermal properties such as conductivity,
specific heat, density, and thickness can be found in various handbooks, or in manufacturers literature,
or from bench-scale measurements. The burning behavior of materials at different heat fluxes is more
difficult to describe, and the properties more difficult to obtain. Even though entire books are devoted to the
subject [11], it is still difficult to find information on a particular item.

A significant part of the FDS input file directs the code to output various quantities in various ways.
Much like in an actual experiment, the user must decide before the calculation begins what information to
save. There is no way to recover information after the calculation is over if it was not requested at the start.

A complete description of the input parameters required by FDS can be found in the FDS User’s
Guide [3].

2.1.6 Output Quantities

FDS computes the temperature, density, pressure, velocity and chemical composition within each numerical
grid cell at each discrete time step. There are typically hundreds of thousands to millions of grid cells
and thousands to hundreds of thousands of time steps. In addition, FDS computes at solid surfaces the
temperature, heat flux, mass loss rate, and various other quantities. The user must carefully select what data
to save, much like one would do in designing an actual experiment. Even though only a small fraction of the
computed information can be saved, the output typically consists of fairly large data files. Typical output
quantities for the gas phase include:

• Gas temperature

• Gas velocity

• Gas species concentration (water vapor, CO2, CO, N2)

• Smoke concentration and visibility estimates

• Pressure

• Heat release rate per unit volume

• Mixture fraction (or air/fuel ratio)

• Gas density

• Water droplet mass per unit volume

On solid surfaces, FDS predicts additional quantities associated with the energy balance between gas and
solid phase, including
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• Surface and interior temperature

• Heat flux, both radiative and convective

• Burning rate

• Water droplet mass per unit area

Global quantities recorded by the program include:

• Total Heat Release Rate (HRR)

• Sprinkler and detector activation times

• Mass and energy fluxes through openings or solids

Time histories of various quantities at a single point in space or global quantities like the fire’s heat release
rate (HRR) are saved in simple, comma-delimited text files that can be plotted using a spreadsheet program.
However, most field or surface data are visualized with a program called Smokeview, a tool specifically
designed to analyze data generated by FDS. FDS and Smokeview are used in concert to model and visu-
alize fire phenomena. Smokeview performs this visualization by presenting animated tracer particle flow,
animated contour slices of computed gas variables and animated surface data. Smokeview also presents
contours and vector plots of static data anywhere within a scene at a fixed time.

A complete list of FDS output quantities and formats is given in Ref. [3]. Details on the use of Smoke-
view are found in Ref. [12].

2.1.7 Governing Equations, Assumptions and Numerics

Following is a brief description of the major components of FDS. Detailed information regarding the as-
sumptions and governing equations associated with the model is provided in Section 3.1.

Hydrodynamic Model FDS solves numerically a form of the Navier-Stokes equations appropriate for low-
speed, thermally-driven flow with an emphasis on smoke and heat transport from fires. The core
algorithm is an explicit predictor-corrector scheme that is second order accurate in space and time.
Turbulence is treated by means of the Smagorinsky form of Large Eddy Simulation (LES). It is possi-
ble to perform a Direct Numerical Simulation (DNS) if the underlying numerical grid is fine enough.
LES is the default mode of operation.

Combustion Model For most applications, FDS uses a combustion model based on the mixture fraction
concept. The mixture fraction is a conserved scalar quantity that is defined as the fraction of gas at a
given point in the flow field that originates as fuel. Unlike versions of FDS prior to 5, the reaction of
fuel and oxygen is not necessarily instantaneous and complete, and there are several optional schemes
that are designed to predict the extent of combustion in under-ventilated spaces. The mass fractions
of all of the major reactants and products can be derived from the mixture fraction by means of “state
relations,” expressions arrived at by a combination of simplified analysis and measurement.

Radiation Transport Radiative heat transfer is included in the model via the solution of the radiation trans-
port equation for a gray gas. In a limited number of cases, a wide band model can be used in place
of the gray gas model to provide a better spectral accuracy. The radiation equation is solved using
a technique similar to a finite volume method for convective transport, thus the name given to it is
the Finite Volume Method (FVM). Using approximately 100 discrete angles, the finite volume solver
requires about 20 % of the total CPU time of a calculation, a modest cost given the complexity of
radiation heat transfer. Water droplets can absorb and scatter thermal radiation. This is important in
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cases involving mist sprinklers, but also plays a role in all sprinkler cases. The absorption and scat-
tering coefficients are based on Mie theory. The scattering from the gaseous species and soot is not
included in the model.

Geometry FDS approximates the governing equations on one or more rectilinear grids. The user prescribes
rectangular obstructions that are forced to conform with the underlying grid.

Boundary Conditions All solid surfaces are assigned thermal boundary conditions, plus information about
the burning behavior of the material. Heat and mass transfer to and from solid surfaces is usually
handled with empirical correlations, although it is possible to compute directly the heat and mass
transfer when performing a Direct Numerical Simulation (DNS).

Sprinklers and Detectors The activation of sprinklers and heat and smoke detectors is modeled using fairly
simple correlations of thermal inertia for sprinklers and heat detectors, and transport lag for smoke
detectors. Sprinkler sprays are modeled by Lagrangian particles that represent a sampling of the water
droplets ejected from the sprinkler.

2.1.8 Limitations

Although FDS can address most fire scenarios, there are limitations in all of its various algorithms. Some of
the more prominent limitations of the model are listed here. More specific limitations are discussed as part
of the description of the governing equations in Section 3.1.

Low Speed Flow Assumption The use of FDS is limited to low-speed1 flow with an emphasis on smoke
and heat transport from fires. This assumption rules out using the model for any scenario involving
flow speeds approaching the speed of sound, such as explosions, choke flow at nozzles, and detona-
tions.

Rectilinear Geometry The efficiency of FDS is due to the simplicity of its rectilinear numerical grid and
the use of a fast, direct solver for the pressure field. This can be a limitation in some situations where
certain geometric features do not conform to the rectangular grid, although most building components
do. There are techniques in FDS to lessen the effect of “sawtooth” obstructions used to represent non-
rectangular objects, but these cannot be expected to produce good results if, for example, the intent
of the calculation is to study boundary layer effects. For most practical large-scale simulations, the
increased grid resolution afforded by the fast pressure solver offsets the approximation of a curved
boundary by small rectangular grid cells.

Fire Growth and Spread Because the model was originally designed to analyze industrial-scale fires, it
can be used reliably when the heat release rate (HRR) of the fire is specified and the transport of
heat and exhaust products is the principal aim of the simulation. In these cases, the model predicts
flow velocities and temperatures to an accuracy within 10 % to 20 % of experimental measurements,
depending on the resolution of the numerical grid 2. However, for fire scenarios where the heat release
rate is predicted rather than specified, the uncertainty of the model is higher. There are several reasons
for this: (1) properties of real materials and real fuels are often unknown or difficult to obtain, (2)
the physical processes of combustion, radiation and solid phase heat transfer are more complicated
than their mathematical representations in FDS, (3) the results of calculations are sensitive to both

1Mach numbers less than about 0.3
2It is extremely rare to find measurements of local velocities and/or temperatures from fire experiments that have reported error

estimates that are less than 10 %. Thus, the most accurate calculations using FDS do not introduce significantly greater errors in
these quantities than the vast majority of fire experiments.
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the numerical and physical parameters. Current research is aimed at improving this situation, but it is
safe to say that modeling fire growth and spread will always require a higher level of user skill and
judgment than that required for modeling the transport of smoke and heat from specified fires.

Combustion For most applications, FDS uses a mixture fraction-based combustion model. The mixture
fraction is a conserved scalar quantity that is defined as the fraction of gas at a given point in the
flow field that originated as fuel. In its simplest form, the model assumes that combustion is mixing-
controlled, and that the reaction of fuel and oxygen is infinitely fast, regardless of the temperature. For
large-scale, well-ventilated fires, this is a good assumption. However, if a fire is in an under-ventilated
compartment, or if a suppression agent like water mist or CO2 is introduced, fuel and oxygen are
allowed to mix and not burn, according to a few empirically-based criteria. The physical mechanisms
underlying these phenomena are complex, and are tied closely to the flame temperature and local strain
rate, neither of which are readily-available in a large scale fire simulation. Subgrid-scale modeling of
gas phase suppression and extinction is still an area of active research in the combustion community.
Until reliable models can be developed for building-scale fire simulations, simple empirical rules can
be used that prevent burning from taking place when the atmosphere immediately surrounding the fire
cannot sustain the combustion. Details are found in Section 6.

Radiation Radiative heat transfer is included in the model via the solution of the radiation transport equa-
tion (RTE) for a gray gas, and in some limited cases using a wide band model. The RTE is solved
using a technique similar to finite volume methods for convective transport, thus the name given to it is
the Finite Volume Method (FVM). There are several limitations of the model. First, the absorption co-
efficient for the smoke-laden gas is a complex function of its composition and temperature. Because
of the simplified combustion model, the chemical composition of the smokey gases, especially the
soot content, can effect both the absorption and emission of thermal radiation. Second, the radiation
transport is discretized via approximately 100 solid angles, although the user may choose to use more
angles. For targets far away from a localized source of radiation, like a growing fire, the discretization
can lead to a non-uniform distribution of the radiant energy. This error is called “ray effect” and can
be seen in the visualization of surface temperatures, where “hot spots” show the effect of the finite
number of solid angles. The problem can be lessened by the inclusion of more solid angles, but at a
price of longer computing times. In most cases, the radiative flux to far-field targets is not as important
as those in the near-field, where coverage by the default number of angles is much better.
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2.2 Peer Review Process

FDS is reviewed both internally and externally. All documents issued by the National Institute of Standards
and Technology are formally reviewed internally by members of the staff. The theoretical basis of FDS
is laid out in the present document, and is subject to internal review by staff members who are not active
participants in the development of the model, but who are members of the Fire Research Division and are
considered experts in the fields of fire and combustion. Externally, papers detailing various parts of FDS
are regularly published in peer-reviewed journals and conference proceedings. In addition, FDS is used
world-wide by fire protection engineering firms who review the technical details of the model related to
their particular application. Some of these firms also publish in the open literature reports documenting
internal efforts to validate the model for a particular use. Many of these studies are referenced in Volume 3
of the FDS Technical Reference Guide [2].

2.2.1 Survey of the Relevant Fire and Combustion Literature

FDS has two separate manuals – the FDS Technical Reference Guide [2] and the FDS User’s Guide [3].
The Technical Reference Guide is broken into three volumes: (1) Mathematical Model, (2) Verification,
and (3) Experimental Validation. Smokeview has its own User’s Guide [12]. The FDS and Smokeview
User Guides only describe the mechanics of using the computer programs. The Technical Reference Guides
provides the theory, algorithm details, and verification and validation work.

There are numerous sources that describe various parts of the model. The basic set of equations solved in
FDS was formulated by Rehm and Baum in the Journal of Research of the National Bureau of Standards [9].
The basic hydrodynamic algorithm evolved at NIST through the 1980s and 1990s, incorporating fairly
well-known numerical schemes that are documented in books by Anderson, Tannehill and Pletcher [13],
Peyret and Taylor [14], and Ferziger and Perić [15]. This last book provides a good description of the large
eddy simulation technique and provides references to many current publications on the subject. Numerical
techniques appropriate for combustion systems are described by Oran and Boris [10]. The mixture fraction
combustion model is described in a review article by Bilger [16]. Basic heat transfer theory is provided by
Holman [17] and Incropera [18]. Thermal radiation is described in Siegel and Howell [19].

Much of the current knowledge of fire science and engineering is found in the SFPE Handbook of
Fire Protection Engineering [20]. Popular textbooks in fire protection engineering include those by Drys-
dale [21] and Quintiere [22]. On-going research in fire and combustion is documented in several periodicals
and conference proceedings. The International Association of Fire Safety Science (IAFSS) organizes a
conference every two years, the proceedings of which are frequently referenced by fire researchers. In-
terscience Communications, a London-based publisher of several fire-related journals, hosts a conference
known as Interflam roughly every three years in the United Kingdom. The Combustion Institute hosts an
international symposium on combustion every two years, and in addition to the proceedings of this sym-
posium, the organization publishes its own journal, Combustion and Flame. The papers appearing in the
IAFSS conference proceedings, the Combustion Symposium proceedings, and Combustion and Flame are
all peer-reviewed, while those appearing in the Interflam proceedings are selected based on the submission
of a short abstract. Both the Society for Fire Protection Engineers (SFPE) and the National Fire Protection
Association (NFPA) publish peer-reviewed technical journals entitled the Journal of Fire Protection Engi-
neering and Fire Technology. Other often-cited, peer-reviewed technical journals include the Fire Safety
Journal, Fire and Materials, Combustion Science and Technology, Combustion Theory and Modeling and
the Journal of Heat Transfer.

Research at NIST is documented in various ways beyond contributions made by staff to external journals
and conferences. NIST publishes several forms of internal reports, special publications, and its own journal
called the Journal of Research of NIST. An internal report, referred to as a NISTIR (NIST Inter-agency
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Report), is a convenient means to disseminate information, especially when the quantity of data exceeds
what could normally be accepted by a journal. Often parts of a NISTIR are published externally, with the
NISTIR itself serving as the complete record of the work performed. Previous versions of the FDS Technical
Reference Guide and User’s Guide were published as NISTIRs. The current FDS and Smokeview manuals
are being published as NIST Special Publications, distinguished from NISTIRs by the fact that they are
permanently archived. Work performed by an outside person or organization working under a NIST grant
or contract is published in the form of a NIST Grant/Contract Report (GCR). All work performed by the
staff of the Building and Fire Research Laboratory at NIST beyond 1993 is permanently stored in electronic
form and made freely available via the Internet and yearly-released compact disks (CDs) or other electronic
media.

2.2.2 Review of the Theoretical Basis of the Model

The technical approach and assumptions of the model have been presented in the peer-reviewed scientific
literature and at technical conferences cited in the previous section. The major assumptions of the model, for
example the large eddy simulation technique and the mixture fraction combustion model, have undergone
a roughly 40 year development and are now documented in popular introductory text books. More specific
sub-models, like the sprinkler spray routine or the various pyrolysis models, have yet to be developed to
this extent. As a consequence, all documents produced by NIST staff are required to go through an internal
editorial review and approval process. This process is designed to ensure compliance with the technical
requirements, policy, and editorial quality required by NIST. The technical review includes a critical eval-
uation of the technical content and methodology, statistical treatment of data, uncertainty analysis, use of
appropriate reference data and units, and bibliographic references. The FDS and Smokeview manuals are
first reviewed by a member of the Fire Research Division, then by the immediate supervisor of the author
of the document, then by the chief of the Fire Research Division, and finally by a reader from outside the
division. Both the immediate supervisor and the division chief are technical experts in the field. Once the
document has been reviewed, it is then brought before the Editorial Review Board (ERB), a body of repre-
sentatives from all the NIST laboratories. At least one reader is designated by the Board for each document
that it accepts for review. This last reader is selected based on technical competence and impartiality. The
reader is usually from outside the division producing the document and is responsible for checking that
the document conforms with NIST policy on units, uncertainty and scope. He/she does not need to be a
technical expert in fire or combustion.

Recently, the US Nuclear Regulatory Commission (US NRC) published a seven-volume report on its
own verification and validation study of five different fire models used for nuclear power plant applica-
tions [23]. Two of the models are essentially a set of empirically-based correlations in the form of engi-
neering “spread sheets.” Two of the models are classic two-zone fire models, one of which is the NIST
developed CFAST. FDS is the sole CFD model in the study. More on the study and its results can be found
in Volume 3 of the FDS Technical Reference Guide [2].

Besides formal internal and peer review, FDS is subjected to continuous scrutiny because it is available
free of charge to the general public and is used internationally by those involved in fire safety design and
post-fire reconstruction. The quality of the FDS and Smokeview User Guides is checked implicitly by the
fact that the majority of model users have not taken a formal training course in the actual use of the model,
but are able to read the supporting documents, perform a few sample simulations, and then systematically
build up a level of expertise appropriate for their applications. The developers receive daily feedback from
users on the clarity of the documentation and add clarifications when needed. Before new versions of the
model are released, there is a several month “beta test” period in which users test the new version using
the updated documentation. This process is similar, although less formal, to that which most computer
software programs undergo. Also, the source code for FDS is released publicly, and has been used at various
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universities world-wide, both in the classroom as a teaching tool as well as for research. As a result, flaws
in the theoretical development and the computer program itself have been identified and corrected. As FDS
continues to evolve, the user base will continue to serve as a means to evaluate the model. We consider this
process as important to the development of FDS as the formal internal and external peer-review processes.
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2.3 Development Process

Changes are made to the FDS source code daily, and tracked via revision control software. However, these
daily changes do not constitute a change to the version number. After the developers determine that enough
changes have been made to the source, they release a new minor upgrade, 5.2.12 to 5.2.13, for example. This
happens every few weeks. A change from 5.2 to 5.3 might happen only a few times a year, when significant
improvements have been made to the model physics.

There is no formal process by which FDS is updated. Each developer works on various routines, and
makes changes as warranted. Minor bugs are fixed without any communication (the developers are in
different locations), but more significant changes are discussed via email or telephone calls. A suite of
simple verification calculations (included in this document) are routinely run to ensure that the daily bug
fixes have not altered any of the important algorithms. A suite of validation calculations (also included here)
are run with each significant upgrade. Significant changes to FDS are made based on the following criteria,
in no particular order:

Better Physics: The goal of any model is to be predictive, but it also must be reliable. FDS is a blend of
empirical and deterministic sub-models, chosen based on their robustness, consistency, and reliability.
Any new sub-model must demonstrate that it is of comparable or superior accuracy to its empirical
counterpart.

Modest CPU Increase: If a proposed algorithm doubles the calculation time but yields only a marginal
improvement in accuracy, it is likely to be rejected. Also, the various routines in FDS are expected
to consume CPU time in proportion to their overall importance. For example, the radiation transport
algorithm consumes about 25 % of the CPU time, consistent with the fact that about one-fourth to
one-third of the fire’s energy is emitted as thermal radiation.

Simpler Algorithm: If a new algorithm does what the old one did using less lines of code, it is almost
always accepted, so long as it does not decrease functionality.

Increased or Comparable Accuracy: The validation experiments that are part of this guide serve as the
metric for new routines. It is not enough for a new algorithm to perform well in a few cases. It must
show clear improvement across the suite of experiments. If the accuracy is only comparable to the
previous version, then some other criteria must be satisfied.

Acceptance by the Fire Protection Community: Especially in regard to fire-specific devices, like sprin-
klers and smoke detectors, the algorithms in FDS often are based on their acceptance among the
practicing engineers.
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Chapter 3

Governing Equations and Solution
Procedure

This chapter presents the governing equations of FDS and an outline of the general solution procedure.
Details of the individual equations are described in later chapters. The governing equations are presented
as a set of partial differential equations, with appropriate simplifications and approximations noted. The
numerical method essentially consists of a finite difference approximation of the governing equations and a
procedure for updating these equations in time.

3.1 Governing Equations

This section introduces the basic conservation equations for mass, momentum and energy for a Newtonian
fluid. These are the same equations that can be found in almost any textbook on fluid dynamics or CFD. A
particularly useful reference for a description of the equations, the notation used, and the various approxi-
mations employed is Anderson et al. [13]. Note that this is a set of partial differential equations consisting
of six equations for six unknowns, all functions of three spatial dimensions and time: the density ρ, the three
components of velocity u = [u,v,w]T , the temperature T , and the pressure p.

3.1.1 Mass and Species Transport

Mass conservation can be expressed either in terms of the density, ρ,

∂ρ

∂t
+∇ ·ρu = ṁ′′′b (3.1)

or in terms of the individual gaseous species, Yα:

∂

∂t
(ρYα)+∇ ·ρYαu = ∇ ·ρDα∇Yα + ṁ′′′α + ṁ′′′b,α (3.2)

Here ṁ′′′b = ∑α ṁ′′′b,α is the production rate of species by evaporating droplets or particles. Summing these
equations over all species yields the original mass conservation equation because ∑Yα = 1 and ∑ ṁ′′′α = 0
and ∑ ṁ′′′b,α = ṁ′′′b , by definition, and because it is assumed that ∑ρDα∇Yα = 0. This last assertion is not true,
in general. However, transport equations are solved for total mass and all but one of the species, implying
that the diffusion coefficient of the implicit species is chosen so that the sum of all the diffusive fluxes is
zero.
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3.1.2 Momentum Transport

The momentum equation in conservative form is written:

∂

∂t
(ρu)+∇ ·ρuu+∇p = ρg+ fb +∇ · τi j (3.3)

The term uu is a diadic tensor. In matrix notation, with u = [u,v,w]T , the diadic is given by the tensor
product of the vectors u and uT . The term ∇ ·ρuu is thus a vector formed by applying the vector operator
∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂z) to the tensor. The force term fb in the momentum equation represents external forces such
as the drag exerted by liquid droplets. The stress tensor τi j is defined:

τi j = µ
(

2 Si j−
2
3

δi j(∇ ·u)
)

; δi j =
{

1 i = j
0 i 6= j

; Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
i, j = 1,2,3 (3.4)

The term Si j is the symmetric rate-of-strain tensor, written using conventional tensor notation. The symbol
µ is the dynamic viscosity of the fluid.

The overall computation can either be treated as a Direct Numerical Simulation (DNS), in which the
dissipative terms are computed directly, or as a Large Eddy Simulation (LES), in which the large-scale eddies
are computed directly and the subgrid-scale dissipative processes are modeled. The numerical algorithm
is designed so that LES becomes DNS as the grid is refined. Most applications of FDS are LES. For
example, in simulating the flow of smoke through a large, multi-room enclosure, it is not possible to resolve
the combustion and transport processes directly. However, for small-scale combustion experiments, it is
possible to compute the transport and combustion processes directly.

Chapter 5 contains a detailed description of the numerical solution of the momentum and pressure equa-
tions. For the purpose of outlining the solution procedure below, it is sufficient to consider the momentum
equation written as:

∂u
∂t

+F+∇H = 0 (3.5)

and the pressure equation as

∇
2H =− ∂

∂t
(∇ ·u)−∇ ·F (3.6)

which is obtained by taking the divergence of the momentum equation.

3.1.3 Energy Transport

The energy conservation equation is written in terms of the sensible enthalpy, hs:

∂

∂t
(ρhs)+∇ ·ρhsu =

Dp
Dt

+ q̇′′′− q̇′′′b −∇ · q̇′′+ ε (3.7)

The sensible enthalpy is a function of the temperature:

hs = ∑
α

Yαhs,α ; hs,α(T ) =
∫ T

T0

cp,α(T ′)dT ′ (3.8)

Note the use of the material derivative, D()/Dt = ∂()/∂t +u ·∇(). The term q̇′′′ is the heat release rate per
unit volume from a chemical reaction. The term q̇′′′b is the energy transferred to the evaporating droplets.
The term q̇′′ represents the conductive and radiative heat fluxes:

q̇′′ =−k∇T −∑
α

hs,αρDα∇Yα + q̇′′r (3.9)

where k is the thermal conductivity.
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3.1.4 Equation of State

p =
ρR T

W
(3.10)

An approximate form of the Navier-Stokes equations appropriate for low Mach number applications is
used in the model. The approximation involves the filtering out of acoustic waves while allowing for large
variations in temperature and density [9]. This gives the equations an elliptic character, consistent with low
speed, thermal convective processes. In practice, this means that the spatially resolved pressure, p(x,y,z),
is replaced by an “average” or “background” pressure, pm(z, t), that is only a function of time and height
above the ground.

pm(z, t) = ρT R ∑
α

Yα/Wα (3.11)

Taking the material derivative of the background pressure and substituting the result into the energy con-
servation equation yields an expression for the velocity divergence, ∇u̇, that is an important term in the
numerical algorithm because it effectively eliminates the need to solve a transport equation for the specific
enthalpy. The source terms from the energy conservation equation are incorporated into the divergence,
which appears in the mass transport equations. The temperature is found from the density and background
pressure via the equation of state.

3.2 Solution Procedure

FDS uses a second-order accurate finite-difference approximation to the governing equations on a series of
connected recti-linear meshes. The flow variables are updated in time using an explicit second-order Runge-
Kutta scheme. This section describes how this algorithm is used to advance in time the density, species
mass fractions, velocity components, and background and perturbation pressure. Let ρn, Y n

α , un, pn
m and H n

denote these variables at the nth time step.

1. Compute the “patch-average” velocity field ūn (see Section 5.6.3).

2. Estimate ρ, Yα, and pm at the next time step with an explicit Euler step. For example, the density is
estimated by

ρ∗−ρn

δt
+∇ ·ρnūn = 0 (3.12)

3. Exchange1 values of ρ∗ and Y ∗α at mesh boundaries.

4. Apply boundary conditions for ρ∗ and Y ∗α .

5. Compute the divergence, ∇ · ū∗, using the estimated thermodynamic quantities. Note that at this stage,
the velocity field has not been estimated at the next time step, only its divergence.

6. Solve the Poisson equation for the pressure fluctuation with a direct solver on each individual mesh:

∇
2H n =−

[
∇ ·u∗−∇ · ūn

δt

]
−∇ · F̄n (3.13)

Note that the vector F̄n = F(ρn, ūn) is computed using patch-averaged velocities and that the diver-
gence of the patch-averaged field is computed explicitly.

1In this context, the word “exchange” implies that information is to be passed from one mesh to another via MPI (Message
Passing Interface) routines.
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7. Estimate the velocity at the next time step

u∗− ūn

δt
+ F̄n +∇H n = 0 (3.14)

Note that the divergence of the estimated velocity field is identically equal to the estimated divergence,
∇ ·u∗, that was derived from the estimated thermodynamic quantities.

8. Check the time step at this point to ensure that

δt max
(
|u|
δx

,
|v|
δy

,
|w|
δz

)
< 1 ; 2 δt ν

(
1

δx2 +
1

δy2 +
1

δz2

)
< 1 (3.15)

If the time step is too large, it is reduced so that it satisfies both constraints and the procedure returns
to the beginning of the time step. If the time step satisfies the stability criteria, the procedure continues
to the corrector step. See Section 5.5 for more details on stability.

This concludes the “Predictor” stage of the time step. At this point, values of H n and the components of u∗
are exchanged at mesh boundaries via MPI calls.

1. Compute the “patch-average” velocity field ū∗ (see Section 5.6.3).

2. Apply the second part of the Runge-Kutta update to the mass variables. For example, the density is
corrected

ρn+1− 1
2 (ρn +ρ∗)

δt/2
+∇ ·ρ∗ū∗ = 0 (3.16)

3. Exchange values of ρn and Y n
α at mesh boundaries.

4. Apply boundary conditions for ρn and Y n
α .

5. Compute the divergence ∇ ·un+1 from the corrected thermodynamic quantities. Note again that the
velocity field has not been corrected at the point.

6. Compute the pressure fluctuation using estimated quantities

∇
2H ∗ =−

[
∇ ·un+1− 1

2 (∇ · ū∗+∇ · ūn)
δt/2

]
−∇ · F̄∗ (3.17)

7. Update the velocity via the second part of the Runge-Kutta scheme

un+1− 1
2 (ū∗+ ūn)

δt/2
+ F̄∗+∇H ∗ = 0 (3.18)

Note again that the divergence of the corrected velocity field is identically equal to the divergence that
was computed earlier.

8. At the conclusion of the time step, values of H ∗ and the components of un+1 are exchanged at mesh
boundaries via MPI calls.
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3.3 Spatial Discretization

Spatial derivatives in the governing equations are written as second-order accurate finite differences on a
rectilinear grid. The overall domain is a rectangular box that is divided into rectangular grid cells. Each cell
is assigned indices i, j and k representing the position of the cell in the x, y and z directions, respectively.
Scalar quantities are assigned in the center of each grid cell; thus, ρn

i jk is the density at the nth time step
in the center of the cell whose indices are i, j and k. Vector quantities like velocity are assigned at their
appropriate cell faces. For example, un

i jk is the x-component of velocity at the positive-oriented face of the
i jkth cell; un

i−1, jk is defined at the negative-oriented face of the same cell.
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Chapter 4

Mass and Species Transport Equations

A distinguishing feature of a CFD model is the regime of flow speeds (relative to the speed of sound) for
which it is designed. High speed flow codes involve compressibility effects and shock waves. Low speed
solvers, however, explicitly eliminate compressibility effects that give rise to acoustic (sound) waves. The
Navier-Stokes equations describe the propagation of information at speeds comparable to that of the fluid
flow (for fire, 10-20 m/s), but also at speeds comparable to that of sound waves (for still air, 300 m/s).
Solving a discretized form of these equations would require extremely small time steps in order to account
for information traveling at the speed of sound, making practical simulations difficult.

4.1 The Low Mach Number Assumption

Following the work of Rehm and Baum [9], an approximation to the equation of state (3.10) is made by
decomposing the pressure into a “background” component and a perturbation. The original version of FDS
assumed that the background component of the pressure applied to the entire computational domain, most
often a single compartment. Starting in FDS version 5, it is now assumed that the background component
of pressure can differ from compartment to compartment. If a volume within the computational domain
is isolated from other volumes, except via leak paths or ventilation ducts, it is referred to as a “pressure
zone” and assigned its own background pressure. The pressure within the mth zone, for example, is a linear
combination of its background component and the flow-induced perturbation:

p(x, t) = pm(z, t)+ p̃(x, t) (4.1)

Note that the background pressure is a function of z, the vertical spatial coordinate, and time. For most
compartment fire applications, pm changes very little with height or time. However, for situations where the
pressure increases due to a fire in a tightly sealed enclosure, or when the height of the domain is significant,
pm takes these effects into account [24]. The ambient pressure field is denoted p0(z). Note that the subscript
0 denotes the exterior of the computational domain, not time 0. This is the assumed atmospheric pressure
stratification that serves as both the initial and boundary condition for the governing equations.

The purpose of decomposing the pressure is that for low-Mach number flows, it can be assumed that the
temperature and density are inversely proportional, and thus the equation of state (in the mth pressure zone)
can be approximated

pm = ρT R ∑
α

Yα

Wα

=
ρT R

W
(4.2)

The pressure, p, in the state and energy equations is replaced by the background pressure pm to filter out
sound waves that travel at speeds that are much faster than typical flow speeds expected in fire applications.

21



The low Mach number assumption serves two purposes. First, the filtering of acoustic waves means that the
time step in the numerical algorithm is bound only by the flow speed as opposed to the speed of sound, and
second, the modified state equation leads to a reduction in the number of dependent variables in the system
of equations by one. The energy equation (3.7) is never explicitly solved, but its source terms are included
in the expression for the flow divergence, to be derived presently.

The stratification of the atmosphere is derived from the relation

d p0

dz
=−ρ0(z)g (4.3)

where ρ0 is the background density and g = 9.8 m/s2. Using Eq. (4.2), the background pressure can be
written as a function of the background temperature, T0(z),

p0(z) = p∞ exp
(
−
∫ z

z∞

W g
R T0(z′)

dz′
)

(4.4)

where the subscript infinity generally refers to the ground. A linear temperature stratification of the atmo-
sphere may be specified by the user such that T0(z) = T∞ + Γz where T∞ is the temperature at the ground
and Γ is the lapse rate (e.g., Γ = −0.0098 K/m is the adiabatic lapse rate). In this case p0 and ρ0 are de-
rived from Eqs. (4.4) and (4.2), respectively. It can then be shown that for Γ 6= 0 the pressure stratification
becomes

p0(z) = p∞

(
T0(z)

T∞

)Wg/R Γ

(4.5)

4.2 Combination of the Mass and Energy Equations via the Divergence

Because of the low Mach number assumption, the divergence of the flow, ∇ ·u, plays a very important role
in the overall solution scheme. The divergence is obtained by taking the material (substantial) derivative
of the modified Equation of State (4.2), and then substituting terms from the mass and energy conservation
equations. As shown in Appendix B, for the mth zone with background pressure pm, the divergence may be
written as

∇ ·u = D−P
∂pm

∂t
(4.6)

where

P =
1
pm

(
1− R

Wcp

)
(4.7)

and

D =
ṁ′′′b
ρ

W
W b

+
W
ρ

∑
α

∇ · (ρDα∇[Yα/Wα])+
1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)
ṁ′′′α +P wρg

+
R

Wcp pm

[
q̇′′′− q̇′′′b −∇ · q̇′′−∑

α

hs,α∇ ·ρDα∇Yα + ṁ′′′b ∑
α

Yb,αcp,α(Tb−T )
]

(4.8)

Contributions to the divergence of the flow include the heat release rate of the fire, q̇′′′, heat losses to evap-
orating droplets, q̇′′′b , the net heat flux from thermal conduction and radiation, ∇ · q̇′′, updrafts of air over
considerable heights of the atmosphere, the net mass flux from gas species diffusion and production, and
global pressure changes. The change in the background pressure with time, ∂pm/∂t, is non-zero only if it
assumed that the compartment is tightly sealed, in which case the background pressure, pm, can no longer
be assumed constant due to the increase (or decrease) in mass and thermal energy within the enclosure. The
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time derivative of the background pressure of the mth pressure zone, Ωm, is found by integrating Eq. (4.6)
over the zone volume:

∂pm

∂t
=
(∫

Ωm

D dV −
∫

∂Ωm

u ·dS
)/∫

Ωm

P dV (4.9)

Equation (4.9) is essentially a consistency condition, ensuring that blowing air or starting a fire within a
sealed compartment leads to an appropriate decrease in the divergence within the volume.
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4.3 Numerical Method

Due to the use of the low Mach number approximation, the mass and energy equations are combined through
the divergence. The divergence of the flow field contains many of the fire-specific source terms described
above.

4.3.1 Discretizing the Convective and Diffusive Transport Terms

The density at the center of the i jkth cell is updated in time with the following predictor-corrector scheme.
In the predictor step, the density at the (n+1)st time level is estimated based on information at the nth level

ρ
(n+1)e
i jk −ρn

i jk

δt
+(u ·∇ρ)n

i jk =−ρ
n
i jk(∇ ·u)n

i jk (4.10)

Following the prediction of the velocity and background pressure at the (n + 1)st time level, the density is
corrected

ρ
(n+1)
i jk − 1

2

(
ρn

i jk +ρ
(n+1)e
i jk

)
1
2 δt

+(u ·∇ρ)(n+1)e
i jk =−ρ

(n+1)e
i jk (∇ ·u)(n+1)e

i jk (4.11)

The species conservation equations are differenced the same way, with the addition of the diffusion term
(including turbulent diffusion):

(ρYα)(n+1)e
i jk − (ρYα)n

i jk

δt
+ · · ·= · · ·+(∇ ·ρDα∇Yα)n

i jk (4.12)

at the predictor step, and

(ρYα)(n+1)
i jk − 1

2

(
(ρYα)n

i jk +(ρYα)(n+1)e
i jk

)
1
2 δt

+ · · ·= · · ·+(∇ ·ρDα∇Yα)(n+1)e
i jk (4.13)

at the corrector step. Mass source terms due to chemistry or evaporation, for example, are time split and
applied after the corrector step (see Section 4.3.4).

The convective terms are written as upwind-biased differences in the predictor step and downwind-
biased differences in the corrector step [25]. In the definition to follow, the symbol ± means + in the
predictor step and − in the corrector step. The opposite is true for ∓.

(u ·∇ρ)i jk ≡ 1∓ εu

2
ui jk

ρi+1, jk−ρi jk

δx
+

1± εu

2
ui−1, jk

ρi jk−ρi−1, jk

δx
+

1∓ εv

2
vi jk

ρi, j+1,k−ρi jk

δy
+

1± εv

2
vi, j−1,k

ρi jk−ρi, j−1,k

δy
+

1∓ εw

2
wi jk

ρi j,k+1−ρi jk

δz
+

1± εw

2
wi j,k−1

ρi jk−ρi j,k−1

δz
(4.14)

The convective term in the species transport equation, (u ·∇ρYα)i jk is differenced the exact same way. Note
that without the inclusion of the ε’s, these are simple central difference approximations. The ε’s are local
Courant numbers, εu = uδt/δx, εv = vδt/δy, and εw = wδt/δz, where the velocity components are those
that immediately follow. Their role is to bias the differencing upwind at the predictor step. Where the
local Courant number is near unity, the difference becomes nearly fully upwinded. Where the local Courant
number is much less than unity, the differencing is more centralized.
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4.3.2 Flux Correction

The second-order finite-differencing scheme used in FDS cannot fully resolve sharp gradients on a relatively
coarse grid. Instead, steep gradients cause local over-shoots and under-shoots of quantities like temperature,
density and species mass fraction. For mass fraction in particular, this can result in a solution where the mass
fraction exceeds its permissible limits (i.e. the numerical method transports into or out of a grid cell more
mass than is physically possible). The overall numerical scheme is still mass conserving, but non-physical in
regions of high gradients. This problem can be reduced, but not eliminated, by using higher order numerical
methods. These methods are, however, more expensive. Another solution is to perform a flux transport
correction. This involves examining the solution and locating regions where a non-physical solution exists
and then redistributing mass to correct it. Typically this results in some increased numerical diffusion;
however, this is partially mitigated since at any one time step, the correction is applied to a small number of
cells.

The flux correction scheme (see Appendix E for details) is performed in both the predictor and corrector
steps after updating the species mass fractions, Yα. For each species, two loops are performed over each
computational mesh. The first loop searches for and corrects under-shoots, and the second loop searches for
and corrects over-shoots. An under-shoot occurs if the mass fraction of a species is less than its permissible
minimum, typically 0, or if there was an outflux of that species in the prior time step, ∇ρYα,i jk < 0 , and
the new species mass fraction is less than all of its surrounding cells. An over-shoot occurs if the mass
fraction of a species is greater than its permissible maximum, or if there was an influx of that species in the
prior time step, ∇ρYα,i jk > 0 , and the new species mass fraction is greater than all of its surrounding cells.
In each loop a temporary array is used to store the corrected values which are then applied globally at the
end of each loop. Using a temporary array rather than a cell by cell immediate correction ensures that cells
requiring correction are not bypassed due to the sweep direction of the loop. Under-shoots are corrected
first because in a typical mixture fraction computation it is more likely to have an under-shoot with a value
less than the absolute minimum for the species than it is for an over-shoot to exceed the absolute maximum
for the species.

4.3.3 Flux Limiters

The reader may think of a flux limiter as a form of interpolation scheme which depends on the local state
of the flow field and scalar data. Simple linear interpolation of the cell-centered scalar data to the cell face
would result in a central differencing scheme. Such purely centered schemes are known to generate intoler-
able levels of dispersion error (spurious wiggles) leading to unphysical results such as negative densities or
mass fractions outside the range of [0,1]. To address this issue, FDS has relied on a flux correction scheme
(see Section 4.3.2) which adds a sufficient amount of numerical diffusion to maintain boundedness. There
is, however, more to the problem.

For uniform flow velocity, a fundamental property of the exact solution to the equations governing scalar
transport is that the total variation of the scalar field (the sum of the absolute values of the scalar differences
between neighboring cells) is preserved or diminished (never increased). In other words, no new extrema
are created. Numerical schemes which preserve this property are referred to as total variation diminishing
(TVD) schemes. The practical importance of using a TVD scheme for fire modelling is that such a scheme is
able to accurately track coherent vortex structure in turbulent flames and does not develop spurious reaction
zones.

FDS employs two popular second-order TVD schemes as options for scalar transport: Superbee and
CHARM. Superbee [26] is recommended for LES because it more accurately preserves the scalar variance
for coarse grid solutions which are not expected to be smooth. Due to the gradient steepening applied in
Superbee, however, the convergence degrades at small grid spacing for smooth solutions (the method will
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revert to a stair-step pattern instead of the exact solution). CHARM [27], though slightly more dissipative
than Superbee, is convergent, and is therefore the better choice for DNS calculations where the flame front
is well resolved.

When a flux limiter is chosen for scalar transport (set FLUX_LIMITER=1-4 on MISC), FDS formulates
the density and species advection terms in “flux divergence” form. For example, the predictor step of the
continuity equation is discretized as

ρ
(n+1)e
i jk −ρn

i jk

δt
+∇ · (ρFLu)n

i jk = 0 (4.15)

In 1D, we would have

ρ
(n+1)e
i −ρn

i
δt

+
ρ

FL
i+ 1

2
ui+ 1

2
−ρ

FL
i− 1

2
ui− 1

2

δx
= 0 (4.16)

Note that the ‘1/2’ indicates a face value for a particular cell (i, j,k). A flux-limited scalar value (density in
this case) premultiplies the staggered, face-centered velocity to form the scalar advective flux.

Consider face i + 1
2 between cells i and i + 1 and let φ denote a general scalar variable. The local (loc)

and upstream (up) data variations are

δφloc = φi+1−φi

δφup =
{

φi−φi−1 if ui > 0
φi+2−φi+1 if ui < 0

The limiter function B(r) depends on the upstream-to-local data ratio, r = δφup/δφloc [28]. In FDS, options
for this function are:

FLUX_LIMITER=0 Central Differencing

B(r) = 1 (4.17)

FLUX_LIMITER=1 First-order Upwinding (Godunov’s Scheme)

B(r) = 0 (4.18)

FLUX_LIMITER=2 Superbee (recommended for LES)

B(r) = max(0,min(2r,1),min(r,2)) (4.19)

FLUX_LIMITER=3 MINMOD

B(r) = max(0,min(1,r)) (4.20)

Once B(r) has been determined, the scalar face value is found from

φ
FL
i+1/2 =

{
φi + B(r) 1

2(φi+1−φi) if ui > 0

φi+1 + B(r) 1
2(φi−φi+1) if ui < 0

(4.21)
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Special Case [FLUX_LIMITER=4] CHARM (recommended for DNS) For this limiter the FDS imple-
mentation uses the reciprocal definition of the data ratio, r = δCloc/δCup. The limiter function is given by
[27, 29]

B(r) =
r(3r +1)
(r +1)2 (4.22)

and the scalar face value is then determined from

φ
FL
i+1/2 =

{
φi + B(r) 1

2(φi−φi−1) if ui > 0

φi+1 + B(r) 1
2(φi+1−φi+2) if ui < 0

(4.23)

Remark In practice, we set r = 0 initially and only compute r if the denominator is not zero. Note that for
δφloc = 0 it does not matter which limiter (0-3) is used: all the limiters yield the same scalar face value. For
CHARM, we set both r = 0 and B = 0 initially and only compute B if r > 0 (this requires data variations to
have the same sign), else CHARM reduces to Godunov’s scheme.

Remark Central differencing (FLUX_LIMITER=0), Godunov’s scheme (FLUX_LIMITER=1), and MIN-
MOD (FLUX_LIMITER=3) are essentially included for completeness, debugging, and educational purposes.
These schemes have little utility in practice.

4.3.4 Time Splitting for Mass Source Terms

After the corrector step for the transport scheme, source terms are applied to the scalars. The source terms
are evaluated using the results from the corrected scalar transport scheme (denoted with an asterisk *):

(ρYα)n+1
i jk − (ρYα)∗i jk

δt
= ṁ′′′α,i jk(Y

∗,T ∗) (4.24)

4.3.5 Discretizing the Divergence

The divergence (see Eq. (4.6)) in the mth pressure zone in both the predictor and corrector step is discretized

(∇ ·u)i jk =
R

Wcp pm

(
q̇′′′i jk +(∇ · k∇T )i jk + . . .

)
+

1
pn

(
R

Wcp
−1
)(

∂pm

∂t
−wi jkρ0,kg

)
(4.25)

The thermal and material diffusion terms are pure central differences, with no upwind or downwind bias,
thus they are differenced the same way in both the predictor and corrector steps. For example, the thermal
conduction term is differenced as follows:

(∇ · k∇T )i jk =
1
δx

[
ki+ 1

2 , jk
Ti+1, jk−Ti jk

δx
− ki− 1

2 , jk
Ti jk−Ti−1, jk

δx

]
+

1
δy

[
ki, j+ 1

2 ,k
Ti, j+1,k−Ti jk

δy
− ki, j− 1

2 ,k
Ti jk−Ti, j−1,k

δy

]
+

1
δz

[
ki j,k+ 1

2

Ti j,k+1−Ti jk

δz
− ki j,k− 1

2

Ti jk−Ti j,k−1

δz

]
(4.26)

The temperature is extracted from the density via the equation of state

Ti jk =
pm

ρi jkR ∑
Ns
l=0(Yα,i jk/Wα)

(4.27)
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Because only species 1 through Ns are explicitly computed, the summation is rewritten

W ≡
Ns

∑
α=0

Yα,i jk

Wα

=
1

W0
+

Ns

∑
α=1

(
1

Wα

− 1
W0

)
Yα (4.28)

In isothermal calculations involving multiple species, the density can be extracted from the average molec-
ular weight

ρi jk =
pm

T∞R W
=

W0 pm

T∞R
+

Ns

∑
α=1

(
1−W0

Wα

)
(ρYα)i jk (4.29)

To descibe how the background pressure of the mth pressure zone, pm, is updated in time, consider the
expression for the divergence written in compact notation:

∇ ·u = D−P
∂pm

∂t
(4.30)

The terms D and P are defined by Eqs. (4.8) and (4.7), respectively. The subscript m refers to the number
of the pressure zone; that is, a volume within the computational domain that is allowed to have its own
background pressure rise. A closed room within a building, for example, is a pressure zone. The time
derivative of the background pressure of the mth pressure zone is found by integrating Eq. (4.30) over the
zone volume (denoted by Ωm):

∂pm

∂t
=
(∫

Ωm

D dV −
∫

∂Ωm

u ·dS
)/∫

Ωm

P dV (4.31)

Equation (4.31) is essentially a consistency condition, ensuring that blowing air or starting a fire within a
sealed compartment leads to an appropriate decrease in the divergence within the volume.

In the event that the barrier separating two pressure zones should rupture, Eq. (4.31) is modified so that
the pressure in the newly connected zones is driven towards an equilibrium pressure:

peq = ∑mVm

∑mVm/pm
(4.32)

Note that ∫
Ωm

P dV ≈ Vm

γpm
(4.33)

which allows us to write an expression for the equilibrium pressure using quantities that have already been
calculated:

peq = ∑
m

pm

∫
Ωm

P dV
/

∑
m

∫
Ωm

P dV (4.34)

The pressure in connected zones is driven towards the equilibrium at each time step according to

∂pm

∂t
= r

peq− pm

δt
(4.35)

where r is a relaxation factor of 0.2, a somewhat arbitrary value designed to slow down the fairly rapid
pressure equilibration.

4.3.6 Enthalpy and Specific Heat

Enthalpy, h, and specific heat, cp are computed by doing a mass weighted average of the values for h or cp

for the individual species present. The species values are obtained by table lookup using the nearest integer
to the local temperature. Values for h and cp were obtained from the NIST-JANAF tables [30].
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4.3.7 Coupling the Gas and Solid Phase

Gas phase temperatures are defined at cell centers; solid surfaces lie at the interface of the bordering gas
phase cell and a “ghost” cell inside the solid. As far as the gas phase calculation is concerned, the normal
temperature gradient at the surface is expressed in terms of the temperature difference between the “gas”
cell and the “ghost” cell. The solid surface temperature is not used directly in the gas phase calculation.
Rather, the ghost cell temperature is used to couple the gas and solid phases. The ghost cell temperature has
no physical meaning on its own. It is purely a numerical construct. It does not represent the temperature
within the wall, but rather establishes a temperature gradient at the solid surface consistent with the empirical
correlation. Only the difference between ghost and gas cell temperatures matters, for this defines the heat
transfer to the wall.

In a DNS calculation, the solid surface temperature is assumed to be an average of the ghost cell tem-
perature and the temperature of the first cell in the gas, thus the ghost cell temperature is defined

Tghost = 2Ts−Tgas (4.36)

For an LES calculation, the numerical expression for the heat lost to the boundary is equated with the
empirical convective heat transfer

kLES

Tgas−Tghost

δn
− ρ̄unc̄p(T̄ ) T̄ = h (Tgas−Ts)− ρ̄un c̄p(Ts)Ts (4.37)

where δn is the distance between the center of the ghost cell and the center of the gas cell, and the bar over
the T and ρ indicate the average of the gas and ghost values:

T =
Tgas +Tghost

2
; ρ =

ρgas +ρ∗ghost

2
(4.38)

The specific heat is defined:

c̄p(T ) =
1
T

∫ T

0
cp(T ′)dT ′ (4.39)

Equation (4.37) is solved for Tghost , so that when the conservation equations are updated, the amount of heat
lost to the wall is equivalent to the empirical expression on the right hand side. Note that the asterisk in the
equations above denotes that the value is taken from the previous time step.

At solid walls there is no transfer of mass, thus the boundary condition for the lth species at a wall is
simply

Yl,ghost = Yl,gas (4.40)

where the subscripts “ghost” and “gas” are the same as above since the mass fraction, like temperature, is
defined at cell centers. At forced flow boundaries either the mass fraction Yl,w or the mass flux ṁ′′l of species
l may be prescribed. Then the ghost cell mass fraction can be derived because, as with temperature, the
normal gradient of mass fraction is needed in the gas phase calculation. For cases where the mass fraction
is prescribed

Yl,ghost = 2Yl,w−Yl,gas (4.41)

For cases where the mass flux is prescribed, the following equation must be solved iteratively

ṁ′′l = un
ρghostYl,ghost +ρgasYl,gas

2
−ρD

Yl,gas−Yl,ghost

δn
∓ δt u2

n

2
ρgasYl,gas−ρghostYl,ghost

δn
(4.42)

where ṁ′′l is the mass flux of species l per unit area, un is the normal component of velocity at the wall
pointing into the flow domain, and δn is the distance between the center of the ghost cell and the center of
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the gas cell. Notice that the last term on the right hand side is subtracted at the predictor step and added at
the corrector step, consistent with the biased upwinding introduced earlier.

Once the temperature and species mass fractions have been defined in the ghost cell, the density in the
ghost cell is computed from the equation of state

ρghost =
p0

R Tghost ∑l(Yl,ghost/Wl)
(4.43)

4.3.8 Mass and Energy Transfer at Interpolated Mesh Boundaries

In simulations involving more than one numerical mesh, information has to be passed between meshes, even
when the meshes are being processed by separate computers. If two meshes abut each other, and the mesh
cells are aligned and the same size, then one mesh simply uses the density and species mass fractions of the
adjacent mesh as the “ghost” cell values. However, in cases where the mesh cells are not the same size, the
exchange of information must be done more carefully. Consider a case where two meshes meet:

Mesh 1 Mesh 2

We want the total and species mass fluxes between meshes to be the same, or as close as possible. Let the
density in cell (1, j′,k′) of Mesh 2 be denoted ρ

(2)
1, j′k′ . Assume that this cell abuts four cells in Mesh 1. The

densities in the four abutting cells of Mesh 1 are denoted ρ
(1)
I, jk. Note that j and k are not the same as j′ and

k′. I is the number of cells in the x direction of Mesh 1. The ghost cell quantities in Mesh 1 have an i index
of I + 1. The ghost cell quantities in Mesh 2 have an i index of 0. We want to assert mass conservation at
the mesh interface:

∑
j,k

u(1)
I, jk

ρ
(1)
I+1, jk +ρ

(1)
I, jk

2
δy(1)

δz(1) = u(2)
0, j′k′

ρ
(2)
1, j′k′ +ρ

(2)
0, j′k′

2
δy(2)

δz(2) (4.44)

When solving for ρ
(2)
0, j′k′ , the ghost cell value for Mesh 2, we have to assume that the ghost cells values for

Mesh 1 are simply linearly interpolated from the gas phase values of Mesh 1 and Mesh 2:

ρ
(1)
I+1, jk = ρ

(1)
I, jk +

2δx(1)

δx(1) +δx(2)

(
ρ

(2)
1, j′k′−ρ

(1)
I, jk

)
(4.45)

Rearranging terms in Eq. (4.44) and using the expression for the ghost cells from Eq. (4.45), we get:

ρ
(2)
0, j′k′ =−ρ

(2)
1, j′k′ +

1

u(2)
0, j′k′δy(2) δz(2)

∑
j,k

u(1)
1, jkδy(1)

δz(1)

[
2ρ

(1)
I, jk +

2δx(1)

δx(1) +δx(2)

(
ρ

(2)
1, j′k′−ρ

(1)
I, jk

)]
(4.46)
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Chapter 5

Momentum Transport and Pressure

This chapter describes the solution of the momentum equation. This consists of two major parts – the dis-
cretization of the flux terms and then the solution of an elliptic partial differential equation for the pressure.

5.1 Simplifying the Momentum Equation

First, we start with the non-conservative form of the momentum equation introduced above

ρ

(
∂u
∂t

+(u ·∇)u
)

+∇p = ρg+ fb +∇ · τi j (5.1)

Next, we make the following substitutions:

1. Subtract the hydrostatic pressure gradient of the nth pressure zone, ρn(z, t)g, from both sides. Note
that ∇p = ρng+∇p̃.

2. Apply the vector identity: (u ·∇)u = ∇|u|2/2−u×ω

3. Divide all terms by the density, ρ

4. Decompose the pressure term:
1
ρ

∇p̃ = ∇

(
p̃
ρ

)
− p̃∇

(
1
ρ

)

5. Define H ≡ |u|2/2+ p̃/ρ

Now the momentum equation can be written

∂u
∂t
−u×ω+∇H − p̃∇

(
1
ρ

)
=

1
ρ

[
(ρ−ρn)g+ fb +∇ · τi j

]
(5.2)

It is convenient to write this equation in the form:

∂u
∂t

+F+∇H = 0 (5.3)

31



The vector F is referred to collectively as the momentum flux terms, and the term ∇H is referred to as the
pressure gradient. The spatial discretization of the momentum equations takes the form

∂u
∂t

+Fx,i jk +
Hi+1, jk−Hi jk

δx
= 0 (5.4)

∂v
∂t

+Fy,i jk +
Hi, j+1,k−Hi jk

δy
= 0 (5.5)

∂w
∂t

+Fz,i jk +
Hi j,k+1−Hi jk

δz
= 0 (5.6)

where Hi jk is taken at center of cell i jk, ui jk and Fx,i jk are taken at the side of the cell facing in the forward x
direction, vi jk and Fy,i jk at the side facing in the forward y direction, and wi jk and Fz,i jk at the side facing in
the forward z (vertical) direction. The flux terms are discretized:

Fx = wωy− vωz−
1
ρ

(
fx +

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z

)
(5.7)

Fy = uωz−wωx−
1
ρ

(
fy +

∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z

)
(5.8)

Fz = vωx−uωy−
1
ρ

(
fz +

∂τzx

∂x
+

∂τzy

∂y
+

∂τzz

∂z

)
(5.9)

In the definitions to follow, the components of the vorticity (ωx,ωy,ωz) are located at cell edges pointing
in the x, y and z directions, respectively. The same is true for the off-diagonal terms of the viscous stress
tensor: τzy = τyz, τxz = τzx, and τxy = τyx. The diagonal components of the stress tensor τxx, τyy, and τzz; the
external force components ( fx, fy, fz); and the Courant numbers εu, εv, and εw are located at their respective
cell faces.

Fx,i jk =
(

1∓ εw

2
wi+ 1

2 , jk ωy,i jk +
1± εw

2
wi+ 1

2 , j,k−1 ωy,i j,k−1

)
−
(

1∓ εv

2
vi+ 1

2 , jk ωz,i jk +
1± εv

2
vi+ 1

2 , j−1,k ωz,i, j−1,k

)
− 1

ρi+ 1
2 , jk

(
fx,i jk +

τxx,i+1, jk− τxx,i jk

δx
+

τxy,i jk− τxy,i, j−1,k

δy
+

τxz,i jk− τxz,i, j,k−1

δz

)
(5.10)

Fy,i jk =
(

1∓ εu

2
ui, j+ 1

2 ,k ωz,i jk +
1± εu

2
ui−1, j+ 1

2 ,k ωz,i−1, jk

)
−
(

1∓ εw

2
wi, j+ 1

2 ,k ωx,i jk +
1± εw

2
wi, j+ 1

2 ,k−1 ωx,i j,k−1

)
− 1

ρi, j+ 1
2 ,k

(
fy,i jk +

τyx,i jk− τyx,i−1, jk

δx
+

τyy,i, j+1,k− τyy,i jk

δy
+

τyz,i jk− τyz,i, j,k−1

δz

)
(5.11)

Fz,i jk =
(

1∓ εv

2
vi j,k+ 1

2
ωx,i jk +

1± εv

2
vi, j−1,k+ 1

2
ωx,i, j−1,k

)
−
(

1∓ εu

2
ui j,k+ 1

2
ωy,i jk +

1± εu

2
ui−1, j,k+ 1

2
ωy,i−1, jk

)
− 1

ρi j,k+ 1
2

(
fz,i jk +

τzx,i jk− τzx,i−1, jk

δx
+

τzy,i jk− τzy,i, j−1,k

δy
+

τzz,i j,k+1− τzz,i jk

δz

)
(5.12)
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The components of the vorticity vector are:

ωx,i jk =
wi, j+1,k−wi jk

δy
−

vi j,k+1− vi jk

δz
(5.13)

ωy,i jk =
ui j,k+1−ui jk

δz
−

wi+1, jk−wi jk

δx
(5.14)

ωz,i jk =
vi+1, jk− vi jk

δx
−

ui, j+1,k−ui jk

δy
(5.15)

The components of the viscous stress tensor are:

τxx,i jk = µi jk

(
4
3
(∇ ·u)i jk−2

vi jk− vi, j−1,k

δy
−2

wi jk−wi j,k−1

δz

)
(5.16)

τyy,i jk = µi jk

(
4
3
(∇ ·u)i jk−2

ui jk−ui−1, jk

δx
−2

wi jk−wi j,k−1

δz

)
(5.17)

τzz,i jk = µi jk

(
4
3
(∇ ·u)i jk−2

ui jk−ui−1, jk

δx
−2

vi jk− vi, j−1,k

δy

)
(5.18)

τxy,i jk = τyx,i jk = µi+ 1
2 , j+ 1

2 ,k

(
ui, j+1,k−ui jk

δy
+

vi+1, jk− vi jk

δx

)
(5.19)

τxz,i jk = τzx,i jk = µi+ 1
2 , j,k+ 1

2

(
ui j,k+1−ui jk

δz
+

wi+1, jk−wi jk

δx

)
(5.20)

τyz,i jk = τzy,i jk = µi, j+ 1
2 ,k+ 1

2

(
vi j,k+1− vi jk

δz
+

wi, j+1,k−wi jk

δy

)
(5.21)

The variables εu, εv and εw are local Courant numbers evaluated at the same locations as the velocity compo-
nent immediately following them, and serve to bias the differencing of the convective terms, upwind biasing
for the predictor step and downwind biasing for the corrector step, resulting in a second-order scheme which
is consistent with the scheme used for the continuity equation.

εu =
uδt
δx

; εv =
vδt
δy

; εw =
wδt
δz

(5.22)

The subscript i + 1
2 indicates that a variable is an average of its values at the ith and the (i + 1)th cell. By

construction, the divergence defined in Eq. (4.25) is identically equal to the divergence defined by

(∇ ·u)i jk =
ui jk−ui−1, jk

δx
+

vi jk− vi, j−1,k

δy
+

wi jk−wi j,k−1

δz
(5.23)

The equivalence of the two definitions of the divergence is a result of the form of the discretized equations,
the time-stepping scheme, and the direct solution of the Poisson equation for the pressure.

5.2 Large Eddy Simulation (LES)

The most distinguishing feature of any CFD model is its treatment of turbulence. Chapter 1 contains a brief
history of turbulence modeling as it has been applied to the fire problem. Of the three main techniques of
simulating turbulence, FDS contains only Large Eddy Simulation (LES) and Direct Numerical Simulation
(DNS). There is no Reynolds-Averaged Navier-Stokes (RANS) capability in FDS.

LES is a technique used to model the dissipative processes (viscosity, thermal conductivity, material
diffusivity) that occur at length scales smaller than those that are explicitly resolved on the numerical grid.
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This means that the parameters µ, k and D in the equations above cannot be used directly in most practical
simulations. They must be replaced by surrogate expressions that “model” their impact on the approximate
form of the governing equations. This section contains a simple explanation of how these terms are modeled
in FDS. Note that this discussion is quite different than what it typically found in the literature, thus the
reader is encouraged to consider other explanations of the technique in the references that are listed in a
review article by Pope [31].

There is a small term in the energy equation known as the dissipation rate, ε, the rate at which kinetic
energy is converted to thermal energy by viscosity:

ε≡ τi j ·∇u = µ
(

2 Si j ·Si j−
2
3
(∇ ·u)2

)
= µ

[
2
(

∂u
∂x

)2

+2
(

∂v
∂y

)2

+2
(

∂w
∂z

)2

+

(
∂v
∂x

+
∂u
∂y

)2

+
(

∂w
∂y

+
∂v
∂z

)2

+
(

∂u
∂z

+
∂w
∂x

)2

− 2
3

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)2
]

(5.24)

This term is usually neglected in the energy conservation equation because it is very small relative to the heat
release rate of the fire. To understand where this term originates, form an evolution equation for the kinetic
energy of the fluid by taking the dot product of the momentum equation (3.3) with the velocity vector1:

ρ
Du
Dt
·u = ρ

D
(
|u|2/2

)
Dt

= ρfb ·u−∇p ·u+∇ · (τi j ·u)− ε (5.25)

As mentioned above ε is a negligible quantity in the energy equation. However, its functional form is useful
in representing the dissipation of kinetic energy from the resolved flow field. Following the analysis of
Smagorinsky [32], the viscosity µ is modeled

µLES = ρ(Cs ∆)2
(

2 Si j : Si j−
2
3
(∇ ·u)2

) 1
2

(5.26)

where Cs is an empirical constant and ∆ is a length on the order of the size of a grid cell. The bar above
the various quantities denotes that these are the resolved values, meaning that they are computed from the
numerical solution sampled on a coarse grid (relative to DNS). The other diffusive parameters, the thermal
conductivity and material diffusivity, are related to the turbulent viscosity by

kLES =
µLES cp

Prt
; (ρD)l,LES =

µLES

Sct
(5.27)

The turbulent Prandtl number Prt and the turbulent Schmidt number Sct are assumed to be constant for a
given scenario.

The model for the viscosity, µLES, serves two roles: first, it provides a stabilizing effect in the numerical
algorithm, damping out numerical instabilities as they arise in the flow field, especially where vorticity is
generated. Second, it has the appropriate mathematical form to describe the dissipation of kinetic energy
from the flow. Note the similar mathematical form of µLES and the dissipation rate, ε, defined in Eq. (5.24).
In the parlance of the turbulence community, the dissipation rate is related to the turbulent kinetic energy
(most often denoted by k) by the relation ε≈ k3/2/L, where L is a length scale.

There have been numerous refinements of the original Smagorinsky model [33, 34, 35], but it is difficult
to assess the improvements offered by these newer schemes for fires. There are two reasons for this. First,

1In this section it is convenient to work with the Lagrangian form of the conservation equations.
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the structure of the fire plume is so dominated by the large-scale resolvable eddies that even a constant eddy
viscosity gives results comparable to those obtained using the Smagorinsky model [36]. Second, the lack of
precision in most large-scale fire test data makes it difficult to assess the relative accuracy of each model.
The Smagorinsky model with constant Cs produces satisfactory results for most large-scale applications
where boundary layers are not well-resolved (see Volume 3, Experimental Validation). In fact, experience
to date using the simple form of LES described above has shown that the best results are obtained when the
Smagorinsky constant Cs is set as low as possible to maintain numerical stability. In other words, the most
realistic flow simulations are obtained when resolvable eddies are not “damped” by excessive amounts of
artificial viscosity.

In the discretized form of the momentum equation, the LES form of the dynamic viscosity is defined at
cell centers

µi jk = ρi jk (Cs ∆)2 |S| (5.28)

where Cs is an empirical constant, ∆ = (δxδyδz)
1
3 , and

|S|2 = 2
(

∂u
∂x

)2

+2
(

∂v
∂y

)2

+2
(

∂w
∂z

)2

+
(

∂u
∂y

+
∂v
∂x

)2

+
(

∂u
∂z

+
∂w
∂x

)2

+
(

∂v
∂z

+
∂w
∂y

)2

− 2
3
(∇ ·u)2 (5.29)

The quantity |S| consists of second order spatial differences averaged at cell centers. For example

∂u
∂x
≈

ui jk−ui−1, jk

δxi
(5.30)

∂u
∂y
≈ 1

2

(
ui, j+1,k−ui jk

δy j+ 1
2

+
ui jk−ui, j−1,k

δy j− 1
2

)
(5.31)

The divergence is described in Section 4.3.5.
The thermal conductivity and material diffusivity of the fluid are related to the viscosity by

ki jk =
cp,0 µi jk

Prt
; (ρD)i jk =

µi jk

Sct
(5.32)

where Prt is the turbulent Prandtl number and Sct is the turbulent Schmidt number, both assumed constant.
Note that the specific heat cp,0 is that of the dominant species of the mixture. Based on simulations of
smoke plumes, Cs is 0.20, Prt and Sct are 0.5. There are no rigorous justifications for these choices other
than through comparison with experimental data [37].

5.3 Direct Numerical Simulation (DNS)

There are some flow scenarios where it is possible to use the molecular properties µ, k and D directly.
Usually, this means that the numerical grid cells are on the order of 1 mm or less, and the simulation
is regarded as a Direct Numerical Simulation (DNS). For a DNS, the viscosity, thermal conductivity and
material diffusivity are approximated from kinetic theory because the temperature dependence of each is
important in combustion scenarios. The viscosity of the species α is given by

µα =
26.69×10−7(Wα T )

1
2

σ2
α Ωv

kg
m s

(5.33)

where σα is the Lennard-Jones hard-sphere diameter () and Ωv is the collision integral, an empirical function
of the temperature T . The thermal conductivity of species α is given by

kα =
µα cp,α

Pr
W

m K
(5.34)
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where the Prandtl number Pr is 0.7. The viscosity and thermal conductivity of a gas mixture are given by

µDNS = ∑
α

Yα µα ; kDNS = ∑
α

Yα kα (5.35)

The binary diffusion coefficient of species α diffusing into species β is given by

Dαβ =
2.66×10−7 T 3/2

W
1
2

αβ
σ2

αβ
ΩD

m2

s
(5.36)

where Wαβ = 2(1/Wα +1/Wβ)−1, σαβ = (σα +σβ)/2, and ΩD is the diffusion collision integral, an empirical
function of the temperature, T [38]. It is assumed that nitrogen is the dominant species in any combustion
scenario considered here, thus the diffusion coefficient in the species mass conservation equations is that of
the given species diffusing into nitrogen

(ρD)α,DNS = ρ Dα0 (5.37)

where species 0 is nitrogen.

5.4 Velocity Boundary Conditions

5.4.1 Smooth Walls

When the momentum equation is integrated over a cell adjacent to the wall in an LES it turns out that the
most difficult term to handle is the viscous stress at the wall, e.g. τ̄xz|z=0, because the wall-normal gradient
of the streamwise velocity component cannot be resolved. Note that the sgs stress at the wall is identically
zero. We have, therefore, an entirely different situation than exists in the bulk flow at high Reynolds number
where the viscous terms are negligible and the sgs stress is of critical importance. The fidelity of the sgs
model still influences the wall stress, however, since other components of the sgs tensor affect the value of
the near-wall velocity and hence the resulting viscous stress determined by the wall model. The model used
for τw = τ̄xz|z=0 in FDS is the Werner and Wengle model [39] which we now describe.

An important scaling quantity in the near-wall region is the friction velocity, defined as u∗ ≡
√

τw/ρ.
From the friction velocity we define the nondimensional streamwise velocity u+≡ u/u∗ and nondimensional
wall-normal distance z+ ≡ z/`, where ` = µ/(ρu∗). The law of the wall is then given by [40, 41]

u+ = z+ for z+ < 5 (5.38)

u+ = 2.4lnz+ +5.2 for z+ > 30 (5.39)

The region 5 < z+ < 30, where both viscous and inertial stresses are important, is referred to as the buffer
layer. The upper range of the log law depends on the Reynolds number [40, 42].

Werner and Wengle [39] propose a simplification to the law of the wall to eliminate the mathematical
difficulties of handling the buffer and log layers. Furthermore, WW suppose that their simplified formula
for the streamwise velocity holds instantaneously within the LES. The WW wall law is given by [43]

u+ = z+ for z+ ≤ 11.81 (5.40)

u+ = A(z+)B for z+ > 11.81, (5.41)

where A = 8.3 and B = 1/7. Note that a power law has been substituted for the log law and the viscous
sublayer and the power law region are matched within the buffer region. A comparison of the log law and the
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Figure 5.1: The law of the wall. We have omitted the buffer layer since it is not considered in the WW model. For
z+ ≤ 11.81 we have the viscous sublayer. For z+ > 11.81 we show a comparison of the log law (5.39) (red dashed
line) and the WW power law (5.41) (blue solid line) with A = 8.3 and B = 1/7.

power law is shown in Figure 11.1. In the region 11.81 < z+ < 103 the power law is a good approximation to
the log law and for z+ > 103 the power law loosely exhibits wake region behavior for a flow with Re≈ 5e5
[40, 42]. As we see below, this functional behavior has consequences for high Re flows.

For the purposes of adapting the WW model to FDS we suppose that the first off-wall velocity compo-
nent ũ represents the WW profile averaged in the wall-normal direction (refer to Figure 5.2). The density
is taken as the average of the neighboring cell values and uniform along the face. The WW model as
implemented in FDS is then given by

|τw| =
2µ̄|u|

δz
for z+ ≤ 11.81 (5.42)

|τw| = ρ̄

[
α

(
µ̄

ρ̄δz

)β

+η

(
µ̄

ρ̄δz

)B

|u|

]γ

for z+ > 11.81, (5.43)

where

α =
1−B

2
A

1+B
1−B (5.44)

β = 1+B (5.45)

η =
1+B

A
(5.46)

γ =
2

1+B
(5.47)

Note that µ̄ is the average of the molecular viscosity from the neighboring cells. A detailed derivation of
(5.43) is given in Appendix D.
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Figure 5.2: Near-wall grid.

In order to decide which formula to use for the wall stress, (5.42) or (5.43), we must know z+, which
of course depends on τw. As a practical matter of implementation, given that most boundary layers in FDS
are under-resolved, we first calculate τw from (5.43); we then obtain z+ =

√
τw/ρ̄ ; if z+ > 11.81, then

the computed value of τw is retained, else τw is taken from (5.42), which actually involves no additional
computation since the ghost cell value for the velocity is prescribed for a no-slip wall by default.

5.4.2 Rough Walls

For rough walls we employ the log law presented in Pope [40],

u+ =
1
κ

ln
(

z
z0

)
+ B̃ (5.48)

The von Kármán constant is κ = 0.41. The dimensional roughness height is denoted z0 (prescribed by
setting ROUGHNESS [in meters] on the SURF line). The distance to the wall z is taken as δz/2 for the first
off-wall grid cell (in the wall-normal direction). Pope notes that the parameter B̃ varies with z0/` but attains
a constant value in the fully rough limit. Experiments suggest this limiting value is 8.5. However, in order
for FDS to reproduce the friction law over a broad range of Reynolds numbers, roughness heights, and grid
resolutions, this parameter is adjusted to B̃ = 7.44 (see the FDS Verification Guide).

With these parameters set, the stress for the rough wall case may be obtained from

τw = ρ̄

(
u

2.44ln(0.5δz/z0)+7.44

)2

(5.49)

where u is the streamwise velocity stored at δz/2.

5.4.3 The Transition Region

As can be seen by studying the Moody diagram for the friction law in rough wall pipes (see e.g. [40, 44]), the
transition region where neither the smooth wall limit nor the rough wall limit is accurate spans but a small
range of Reynolds numbers. Therefore, instead of trying to approximate the variation in B̃, the maximum
between the smooth wall (5.43) and rough wall (5.49) stress is used.
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5.5 Time Step and Stability Constraints

The time step is constrained by the convective and diffusive transport speeds via two conditions. The first is
known as the Courant-Friedrichs-Lewy (CFL) condition:

δt max
(
|ui jk|

δx
,
|vi jk|
δy

,
|wi jk|

δz

)
< 1 (5.50)

The estimated velocities u(n+1)e , v(n+1)e and w(n+1)e are tested at each time step to ensure that the CFL
condition is satisfied. If it is not, then the time step is set to 0.8 of its allowed maximum value and the
estimated velocities are recomputed (and checked again). The CFL condition asserts that the solution of
the equations cannot be updated with a time step larger than that allowing a parcel of fluid to cross a grid
cell. For most large-scale calculations where convective transport dominates diffusive, the CFL condition
restricts the time step.

However, in small, finely-gridded domains, a second condition often dominates:

2 max
(

ν,D,
k

ρcp

)
δt
(

1
δx2 +

1
dy2 +

1
δz2

)
< 1 (5.51)

Note that this constraint is applied to the momentum, mass and energy equations via the relevant diffusion
parameter – viscosity, material diffusivity or thermal conductivity. This constraint on the time step, often
referred to as the Von Neumann criterion, is typical of any explicit, second-order numerical scheme for
solving a parabolic partial differential equation. To save CPU time, the Von Neumann criterion is only
invoked for DNS calculations or for LES calculations with grid cells smaller than 5 mm.
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5.6 The Equation for Pressure (Poisson Equation)

An elliptic partial differential equation (known as a Poisson equation) is obtained by taking the divergence
of the momentum equation

∇
2H =−∂(∇ ·u)

∂t
−∇ ·F ; F =−u×ω− p̃∇

(
1
ρ

)
− 1

ρ

(
(ρ−ρ0)g+ fb +∇ · τi j

)
(5.52)

Note that the pressure p̃ appears on both sides of Eq. (5.52). The pressure on the right hand side is taken from
the previous time step of the overall explicit time-marching scheme. It can be neglected if the baroclinic
torque is not considered important in a given simulation. The pressure on the left hand side (incorporated
in the variable H ) is solved for directly. The reason for the decomposition of the pressure term is so that
the linear algebraic system arising from the discretization of Eq. (5.52) has constant coefficients (i.e. it is
separable) and can be solved to machine accuracy by a fast, direct (i.e. non-iterative) method that utilizes
Fast Fourier Transforms (FFT).

The discretized form of the Poisson equation for the modified pressure, H , is:

Hi+1, jk−2Hi jk +Hi−1, jk

δx2 +
Hi, j+1,k−2Hi jk +Hi, j−1,k

δy2 +
Hi j,k+1−2Hi jk +Hi j,k−1

δz2

=−
Fx,i jk−Fx,i−1, jk

δx
−

Fy,i jk−Fy,i, j−1,k

δy
−

Fz,i jk−Fz,i j,k−1

δz
− ∂

∂t
(∇ ·u)i jk (5.53)

The lack of a superscript implies that all quantities are to be evaluated at the same time level. This elliptic
partial differential equation is solved using a direct (non-iterative) FFT-based solver [45] that is part of a
library of routines for solving elliptic PDEs called CRAYFISHPAK2. To ensure that the divergence of the
fluid is consistent with the definition given in Eq. (4.6), the time derivative of the divergence is defined

∂

∂t
(∇ ·u)i jk ≡

(∇ ·u)∗i jk− (∇ ·u)n
i jk

δt
(5.54)

at the predictor step, and then

∂

∂t
(∇ ·u)i jk ≡

(∇ ·u)n+1
i jk −

1
2

[
(∇ ·u)∗i jk +(∇ ·u)n

i jk

]
δt/2

(5.55)

at the corrector step. The discretization of the divergence is given in Eq. (4.25).

5.6.1 Open Boundary Conditions

Outflow: The outflow condition is quite simple. Let q≡ |u|. By definition, H = 1
2 q2 + p̃/ρ. The pressure p̃

is set to p̃ext by the user (DYNAMIC_PRESSURE, 0 by default).

Inflow: When fluid is entering the domain at an OPEN vent we make the assumption that Bernoulli holds
(i.e. inviscid, steady, incompressible) and that the fluid element on the boundary has accelerated from the
state {p̃1,ρ1,q1} along a streamline:

p̃1 + 1
2 ρ1q2

1 = p̃2 + 1
2 ρ2q2

2 (5.56)

2CRAYFISHPAK, a vectorized form of the elliptic equation solver FISHPAK, was originally developed at the National Center
for Atmospheric Research (NCAR) in Boulder, Colorado.

40



Let’s say the fluid has kinetic energy 1
2 ρ1q2

1 at point 1 with ambient pressure p̃1 = p̃ext and accelerates to q2
at point 2 which is on an inflow boundary. Substituting the definition of H for point 2 we obtain

p̃ext + 1
2 ρ1q2

1 = ρ2(H2− 1
2 q2

2)+ 1
2 ρ2q2

2 (5.57)

which rearranges to

H2 =
p̃ext

ρ2
+

1
2

q2
1

ρ1

ρ2︸ ︷︷ ︸
H0

(5.58)

The density ρ2 is taken as the average density between the gas-phase and ghost cells adjacent to the boundary.
In practice, the second term is specified by the user, H0 = 1

2(u2
0 + v2

0 + w2
0), by setting the initial velocity

components on the MISC line. It is assumed that the initial velocity also applies outside the domain at point
1 along the streamline.

5.6.2 Solid Boundary Conditions

Direct Poisson solvers are most efficient if the domain is a rectangular region, although other geometries
such as cylinders and spheres can be handled almost as easily. For these solvers, a no-flux condition is
simple to prescribe at external boundaries. Using the x = xmax boundary as an example:

∂H
∂x

=−Fx−
∂u
∂t

(5.59)

where Fx is the x-component of F at the vent or solid wall, and ∂u/∂t is the user-specified rate of change in
the x-component of velocity. In discretized form, the Poisson solver is supplied with the Neumann boundary
condition

HI+1, jk−HI, jk

δx
=−Fx,I, jk (5.60)

because the normal component of velocity is zero at this boundary from the start of the calculation. How-
ever, many practical problems involve more complicated geometries. For building fires, doors and win-
dows within multi-room enclosures are very important features of the simulations. These elements may
be included in the overall domain as masked grid cells, but the no-flux condition (5.60) cannot be directly
prescribed at the boundaries of these blocked cells. Fortunately, it is possible to exploit the relatively small
changes in the pressure from one time step to the next to enforce the no-flux condition. At the start of a
time step, the components of the convection/diffusion term F are computed at all cell faces that do not cor-
respond to walls. At those cell faces that do correspond to solid walls but are not located at the exterior of
the computational grid, we prescribe (using the same example as above, but now with i 6= I):

Fn
x,i jk =−

H n−1
i+1, jk−H n−1

i jk

δx
−

u∗i jk−un
i jk

δt
(5.61)

at the predictor step, and

F∗x,i jk =−
H ∗−1

i+1, jk−H ∗−1
i jk

δx
−

un+1
i jk −

1
2

(
u∗i jk +un

i jk

)
δt/2

(5.62)

at the corrector step. Note that ∗−1 denotes the pressure term used in the corrector part of the previous time
step. In both of these cases, the value of H n or H ∗ is not known. That is what we are solving for. Instead, the
value of H from the previous time step is used to estimate the pressure gradient. Equations (5.61) or (5.62)
assert that following the solution of the Poisson equation for the pressure, the desired normal component
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of velocity at the next time step, u∗ or un+1, will be driven towards zero. This is approximate because the
true value of the velocity time derivative depends on the solution of the pressure equation, but since the
most recent estimate of pressure is used, the approximation is fairly good. Also, even though there are small
errors in normal velocity at solid surfaces, the divergence of each blocked cell remains exactly zero for the
duration of the calculation. In other words, the total flux into a given obstruction is always identically zero,
and the error in normal velocity is usually at least several orders of magnitude smaller than the characteristic
flow velocity. When implemented as part of a predictor-corrector updating scheme, the no-flux condition at
solid surfaces is maintained fairly well. If greater accuracy is required, the Poisson equation can be solved
iteratively as the boundary condition (5.61) or (5.62) is updated with each successive approximation of the
pressure gradient at the solid wall.

5.6.3 Interpolated Boundary Conditions

The time advancement scheme for multiple meshes involves averaging of the velocity components at a patch
boundary in order to maintain stability. It is extremely important to note that – because of the staggered grid
storage arrangement – two values of the numerical solution for the velocity exist at a given point on a
mesh interface. Consider meshes m (left) and om (right) which are joined side by side in the x direction.
The values u(m)

I, jk and u(om)
0, jk therefore live at the same physical location, but are advanced separately (and

by different processes) during the course of the algorithm. In the ideal circumstance these velocities are
identical, as is the case if the PDEs are enforced at the mesh interface. To improve the speed of our parallel
algorithm, our strategy is instead to keep the difference between these values small while still enforcing
global volume conservation. Our strategy recovers the ideal case in the limit δt → 0. While the primitive
velocity components are indeed unique to a given mesh, for each mesh we may define the discrete “patch-
averaged” field ū which includes ghost cell data and is identical at all overlapping mesh points. To do this
we simply average the coincident values of the velocity components at the mesh interfaces and inject the
ghost cell values from the neighboring mesh. For instance, considering the same side-by-side meshes m and
om as before,

ū(m)
I, jk = ū(om)

0, jk ≡
1
2

(
u(m)

I, jk +u(om)
0, jk

)
(5.63)

for all patch boundary cells j and k. Here, for simplicity, we are only considering the case in which the cell
sizes are equivalent for the adjoining meshes (coarse-fine mesh interfaces are currently handled by the code,
but details will be documented at a later date).

To see how the new patch-averaged fields are used, consider the predictor step in the time advancement,
which may now be written as

u∗ = ūn−δt
(
F(ūn)+∇H n) (5.64)

Note that (5.64) updates a ū field to a u field. Though this is perfectly legitimate, we should be aware
of the following issues. First, the patch-averaging procedure is slightly dissipative. But as long as we
are accurate, this numerical dissipation is minimal and acceptable (much smaller than physical [molecular,
viscous] dissipation). Second, we must now think of the time update in terms of a projection scheme in order
to repair the damage made to the divergence by the averaging procedure (after the averaging procedure, the
divergence for mesh boundary cells no longer exactly matches the divergence obtained from the equation of
state). In practical terms, this means that the Poisson equation for the pressure fluctuation (in the predictor
step) is given by

∇
2H n =−

(
∇ ·u∗−∇ · ūn

δt

)
−F(ūn) (5.65)

In Eq. (5.65), note that F is computed using the patch-averaged velocity field. Further, only the ∇ ·u∗ term
is obtained from the equation of state (4.6). The divergence of the patch-averaged field, ∇ · ūn, is obtained
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by explicitly applying the discrete divergence operator to ūn. Similarly, in the corrector Poisson equation,
only the ∇ ·un+1 term is obtained from the equation of state; ∇ · ū∗ and ∇ · ūn are obtained explicitly:

∇
2H ∗ =−

(
∇ ·un+1− 1

2 (∇ · ū∗+∇ · ūn)
δt/2

)
−F(ū∗) (5.66)

Finally, the velocity corrector step is

un+1 =
1
2

[ūn + ū∗−δt (F(ū∗)+∇H ∗)] (5.67)

The benefit of the averaging procedure is that F is now the same on each mesh for a given location along
a mesh interface, since all force terms are determined using the patch-averaged field. This also means
that stress tensors computed at a mesh interface (which are buried in F) are symmetric; this symmetry
is a requirement for angular momentum conservation. Thus, the patch-averaging procedure prevents the
production of spurious vorticity at mesh interfaces.
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Chapter 6

Combustion

There are two types of combustion models used in FDS. The default model makes use of the mixture fraction,
a quantity representing the fuel and the products of combustion. For the second model, individual gas species
react according to specified Arrhenius reaction parameters. This latter model is most often used in a direct
numerical simulation (DNS) where the diffusion of fuel and oxygen can be modeled directly. However,
most often for large eddy simulations (LES), where the grid is not fine enough to resolve the diffusion of
fuel and oxygen, the mixture fraction-based combustion model is assumed.

6.1 Mixture Fraction Combustion Model

Given a volume containing a mixture of gas species, a mixture fraction can be defined that is the ratio of
the mass of a subset of the species to the total mass present in the volume. In combustion, the mixture
fraction is a conserved quantity traditionally defined as the (mass) fraction of the gas mixture that originates
in the fuel stream. Thus, at a burner surface the mixture fraction is 1 and in fresh air it is 0. In a region
where combustion has occurred this fraction will be comprised of any unburned fuel and that portion of
the combustion products that came from the fuel. The mixture fraction is a function of space and time,
commonly denoted Z(x, t). If it can be assumed that, upon mixing, the reaction of fuel and oxygen occurs
rapidly and completely, the combustion process is referred to as “mixing-controlled.” This implies that all
species of interest can be described in terms of the mixture fraction alone. The correspondence between the
mass fraction of an individual species and the mixture fraction is called its “state relation.” FDS versions
2 through 4 assumed that the gas mixture could be uniquely determined by the mixture fraction alone, an
assumption that implies that fuel and oxygen react instantaneously upon mixing.

For many applications, “mixed is burned” is a reasonable assumption. However, for fire scenarios where
it cannot be assumed that fuel and oxygen react completely upon mixing, for example in under-ventilated
compartments. The mixture fraction itself remains a valid quantity, but it can no longer be assumed that it
completely defines the composition of the gas mixture. If fuel and oxygen are to mix and not burn, at least
two scalar variables are needed to describe the extent to which the fuel and oxygen react. The strategy for
moving beyond the “mixed is burned” model is as follows. Instead of solving a single transport equation for
the mixture fraction Z, multiple transport equations are solved for components of the mixture fraction Zα.
Fuel mass is still conserved, since ∑Zα = Z. For example, if Z1 represents the (unburned) fuel mass fraction,
YF, and we define Z2 = Z−Z1, then Z2 is the mass fraction of burned fuel and is the component of Z that
originates from the combustion products. With this approach it is possible to account for the mixing of fuel
and oxygen without burning. In the sections to follow, various multi-step reaction mechanisms are discussed
using this system of accounting. First, however, the single-step mixture fraction model is described.
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6.1.1 A Single-Step, Instantaneous Reaction

Consider a simple, one-step reaction of fuel and oxygen:

CxHyOzNaMb +νO2 O2→ νCO2 CO2 +νH2O H2O+νCO CO+νS S+νN2 N2 +νMM (6.1)

Note that the nitrogen in the fuel molecule is assumed to form N2 only. Addition product species can be
specified as some number of moles of an average molecular weight species M. These products are presumed
to not consume oxygen during their formation. Soot is assumed to be a mixture of carbon and hydrogen
with the hydrogen atomic fraction given by XH. The stoichiometric coefficient, νS, represents the amount of
fuel that is converted to soot. It is related to the soot yield, yS, via the relation:

νS =
WF

WS

yS ; WS = XHWH +(1−XH)WC (6.2)

Likewise, the stoichiometric coefficient of CO, νCO, is related to the CO yield, yCO, via:

νCO =
WF

WCO

yCO (6.3)

The yields of soot and CO are based on “well-ventilated” or “post-flame” measurements. The increased
production of CO and soot in an under-ventilated compartment will be addressed in the following sections.

The traditional way of expressing the mixture fraction, Z, is as a linear combination of fuel and oxygen
mass fractions:

Z =
sYF − (YO2−Y ∞

O2
)

sY I
F +Y ∞

O2

; s =
νO2WO2

νFWF
; νF = 1 (6.4)

where Y I
F is the fuel mass fraction in fuel stream.1 However, the mixture fraction can also be defined in

terms of the mass fraction of fuel and the carbon-carrying products of combustion:

Z =
1

Y I
F

(
YF +

WF

xWCO2

YCO2 +
WF

xWCO

YCO +
WF

xWS

YS

)
(6.5)

Note that x is the number of carbon atoms in the fuel molecule. The mixture fraction satisfies the conserva-
tion equation

ρ
DZ
Dt

= ∇ ·ρD∇Z (6.6)

obtained by taking a linear combination of the transport equations for the fuel and the carbon carrying
products. If it is assumed that combustion occurs so rapidly that the fuel and oxygen cannot co-exist, then
both simultaneously vanish at a flame surface:

Z(x, t) = Z f ; Z f =
Y ∞

O2

sY I
F +Y ∞

O2

(6.7)

and all species can be related to Z via the “state relations” shown in Fig. 6.1. In versions of FDS prior to 5,
this one-step, instantaneous reaction of fuel and oxygen was assumed. However, starting in version 5, a more
generalized formulation has been implemented and is described next. For this reason, it is more convenient
to work with the definition of Z in Eq. (6.5). The traditional definition, Eq. (6.4), is more convenient when
it is assumed that fuel and oxygen cannot co-exist and that the combustion occurs at an infinitely thin flame
sheet.

1It is assumed throughout that nitrogen is the only possible diluent in the fuel stream, and its mass fraction is denoted by Y I
N2

.
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Figure 6.1: State relations for methane.

6.1.2 A Single-Step Reaction, but with Local Extinction

The physical limitation of the single-step reaction model described in the previous section is that it assumes
fuel and oxygen burn instantaneously when mixed. For large-scale, well-ventilated fires, this is a good as-
sumption. However, if a fire is in an under-ventilated compartment, or if a suppression agent like water mist
or CO2 is introduced, or if the shear layer between fuel and oxidizing streams has a sufficiently large local
strain rate, fuel and oxygen may mix but may not burn. The physical mechanisms underlying these phenom-
ena are complex, and even simplified models still rely on an accurate prediction of the flame temperature
and local strain rate. Subgrid-scale modeling of gas phase suppression and extinction is still an area of active
research in the combustion community.

Simple empirical rules can be used to predict local extinction based on the oxygen concentration and
temperature of the gases in the vicinity of the flame sheet. Figure 6.2 shows values of temperature and
oxygen concentration for which burning can and cannot take place. A derivation of the model, based on the
critical flame temperature concept, is given in Appendix C. Note that once the local state of the gases falls
into the “No Burn” zone, the state relations (Fig. 6.1) are no longer valid for values of Z below stoichio-
metric, since now some fuel may be mixed with the other combustion products. Essentially, there are now
two reactions to consider – the “null” reaction, where fuel and oxygen simply mix and do not burn; and the
“complete” reaction, where fuel and oxygen react and form products according to Eq. (6.1). Note that the
term “complete” does not imply that no soot or CO is formed, but rather that their respective production
rates are proportional to the fuel consumption rate.

With the definition of the mixture fraction, Eq. (6.5), in mind, consider a partitioning of Z into the
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Figure 6.2: Oxygen-temperature phase space showing where com-
bustion is allowed and not allowed to take place.

following components:

Z1 =
YF

Y I
F

(6.8)

Z2 =
1

Y I
F

(
WF

xWCO2

YCO2 +
WF

xWCO

YCO +
WF

xWS

YS

)
(6.9)

such that Z = Z1 + Z2. Transport equations are required for both Z1 and Z2. At the burner surface, Z1 is
assigned the mass flux of fuel, while the mass flux for Z2 is zero. In other words, no combustion products
are generated at the fuel source. Where fuel and oxygen co-exist, a reaction occurs if conditions are favorable
in the sense shown by Fig. 6.2. If a reaction occurs, Z1 is converted to Z2 representing the conversion of fuel
to products. The heat release rate of the fire is obtained by multiplying the fuel consumption rate by the heat
of combustion.

If it is assumed that the yields of CO and soot are fixed, Eq. (6.8) and Eq. (6.9) can be simplified further:

Z1 =
YF

Y I
F

(6.10)

Z2 =
WF[

x−νCO− (1−XH)νS

]
WCO2

YCO2

Y I
F

(6.11)

In this way, CO2 becomes the surrogate for all combustion products.

Since the mixture fraction variables result from linear combinations of the species transport equations,
the converse is also true – that species mass fractions are linear combinations of the mixture fraction vari-
ables. The mass fractions of the species in the mixture, Yα(Z1,Z2), are found via:
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YF = Y I
F Z1

YN2 = (1−Z) Y ∞
N2

+Y I
N2

Z1 +
νN2WN2

WF

Y I
F Z2

YO2 = (1−Z) Y ∞
O2
− νO2WO2

WF

Y I
F Z2

YCO2 =
νCO2WCO2

WF

Y I
F Z2

YH2O =
νH2OWH2O

WF

Y I
F Z2 (6.12)

YCO =
νCOWCO

WF

Y I
F Z2 (6.13)

YS =
νSWS

WF

Y I
F Z2 (6.14)

YM =
νMWM

WF

Y I
F Z2 (6.15)

The stoichiometric coefficients are defined:

νN2 =
a
2

νO2 = νCO2 +
νCO +νH2O− z

2

νCO2 = x−νCO− (1−XH)νS

νM = b

νH2O =
y
2
−XHνS (6.16)

νCO =
WF

WCO

yCO (6.17)

νS =
WF

WS

yS (6.18)

Remember that x is the number of carbon atoms and z is the number of oxygen atoms in the fuel molecule.
It is important to note that the definitions of Z1 and Z2, unlike in the single parameter model, do not imply
anything regarding the rate of combustion, only that the combustion occurs in a single step.

6.1.3 CO Production (Two-Step Reaction with Extinction)

The previous section describes the “complete” reaction as the conversion of fuel to products such that the
production rate of each product species is proportional to the fuel consumption rate. This means that for
each fuel molecule, fixed amounts of CO2, H2O, CO, and soot are formed and these products persist in the
plume indefinitely with no further reaction. This is not an unreasonable assumption if the purpose of the fire
simulation is to assess the impact of the fire on the larger space. However, in under-ventilated fires, soot and
CO are produced at higher rates, and exist within the fuel-rich flame envelope at higher concentrations, than
would otherwise be predicted with a single set of fixed yields that are based on post-flame measurements.
To account for the production of CO and its eventual oxidation at the flame envelope or within a hot upper
layer, an additional reaction is now needed:

CxHyOzNaMb +ν
′
O2

O2 → νH2OH2O+(ν′CO +νCO)CO+νS S+νN2 N2 +νMM (6.19)

ν
′
CO

[
CO+

1
2

O2 → CO2

]
(6.20)

The brackets around the second reaction are there merely to emphasize that the sum of the two reactions
equal Eq. (6.1). There are two stoichiometric coefficients for CO – the first, ν′CO = x− (1−XH)νS− νCO,
represents CO that is produced in the first step of the reaction that can potentially be converted to CO2
assuming the conditions are favorable. ν′CO is equivalent to νCO2 in Eq. (6.1). The second coefficient, νCO,
is the so-called “well-ventilated,” or “post-flame,” value that was introduced in the previous section. The
proposed model of CO production still does not contain the necessary kinetic mechanism to predict the
“post-flame” concentration of CO without the prescription of the measured value of the post-flame CO
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yield. Rather, the proposed model includes the production of large amounts of CO in the first step of a
two-step reaction, followed by a partial conversion to CO2 if there is a sufficient amount of oxygen present.

To describe the composition of the gas species, the mixture fraction, Z, must now be decomposed into
three components:

Z1 =
YF

Y I
F

(6.21)

Z2 =
WF[

x− (1−XH)νS

]
WCO

YCO

Y I
F

(6.22)

Z3 =
WF[

x− (1−XH)νS

]
WCO2

YCO2

Y I
F

(6.23)

Here, x−(1−XH)νS represents the number of carbon atoms in the fuel molecule that are oxidized; that is, the
carbon atoms that are not converted to soot. The decomposition of Z into three components is numerically
convenient. However, the recovery of the individual species mass fractions requires some care. The mass
fraction of any species in the mixture, Yα(Z1,Z2,Z3), is still found via linear combinations of the mixture
fraction variables:

YF = Z1 Y I
F

YN2 = (1−Z) Y ∞
N2

+Y I
N2

Z1 +
νN2WN2

WF

Y I
F (Z2 +Z3)

YO2 = (1−Z) Y ∞
O2
−WO2 Y I

F

WF

(ν′O2
Z2 +νO2 Z3)

YCO2 =
νCO2WCO2

WF

Y I
F Z3

YH2O =
νH2OWH2O

WF

Y I
F (Z2 +Z3) (6.24)

YCO =
(νCO +ν′CO)WCO2

WF

Y I
F Z2 (6.25)

YS =
νSWS

WF

Y I
F (Z2 +Z3) (6.26)

YM =
νMWM

WF

Y I
F (Z2 +Z3) (6.27)

The stoichiometric coefficients are defined:

νN2 =
a
2

ν
′
O2

=
ν′CO +νH2O− z

2

νO2 = νCO2 +
νCO +νH2O− z

2

νCO2 = x− (1−XH)νS

νM = b

νH2O =
y
2
−XHνS (6.28)

ν
′
CO = x−νCO− (1−XH)νS (6.29)

νCO =
WF

WCO

yCO (6.30)

νS =
WF

WS

yS (6.31)

Although these formulae appear complicated, most are determined directly from the composition of the fuel
molecule. The only information expected of the modeler are the fuel composition, the soot and CO yields,
and the atomic fraction of hydrogen in the soot.

6.1.4 Heat Release Rate

The discussion of the various multi-step reactions above is essentially book-keeping, the accounting of the
gas molecules formed in the combustion process. But what of the heat released?
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When the gas constituents are characterized by two mixture fraction variables, there is a single step
reaction that converts fuel and oxygen into a fixed, predefined set of combustion products. Combustion is
either allowed or disallowed2 using the relation shown in Fig. 6.2. If combustion is allowed to occur in a grid
cell, the single-step reaction is assumed to be infinitely fast, and the rate of fuel consumption is controlled
only by the mixing rate of fuel and oxygen. This rate is modeled as described below.

In the case of the two-step, three parameter mixture fraction model, the first step converts the fuel to CO
and other combustion products, and the second step oxidizes the CO into CO2. The first step is determined
as it is in the single step reaction case. The second step, however, is assumed to be rate-dependent.

One-Step, Fast Reaction

When the mixture fraction is divided into two components, Z1 and Z2, there is one chemical reaction that
converts Z1 to Z2. Recall from Section 6.1.2 that this represents single-step combustion with the possibility
of local extinction. From the mixture fraction variables one can determine the amount of fuel and oxygen
present in a grid cell. Ideally, we could use these values in a finite-rate computation to determine the heat
release rate; however, for most computations, the grid resolution is too coarse to resolve the flame. Thus,
flame temperatures will not be realized and a finite-rate computation will not succeed. Instead, if any grid
cell surrounding one containing both fuel and oxygen satisfies the “Burn” criteria depicted in Fig. 6.2,
combustion is assumed to occur. The heat release rate is computed as

q̇′′′ =
ρmin(YF,YO2/s)

τ
∆H ; s =

WF

νO2WO2

(6.32)

Here, τ is a mixing time scale [46] given by

τ =
C (δxδyδz)

2
3

DLES

(6.33)

The coefficient, C, is taken as 0.1 in FDS by default, based on comparisons to various flame height correla-
tions.

While the mixing time scale given in Eq. (6.33) is an easily computed and robust subgrid-scale model
of turbulent combustion, there is still a need, in certain situations, to put an upper bound on the local heat
release rate per unit volume. The reason for this is that FDS is applied over length scales ranging from
millimeters to tens of meters, and the resolution of the numerical grid is sometimes too coarse to expect the
simple mixing time model to work effectively. A scaling analysis of pool fires by Orloff and De Ris [47]
suggests that the spatial average of the heat release rate of a fire is approximately 1200 kW/m3. FDS uses
by default a value of 2500 kW/m3 as an upper bound3 on the local value of the heat release rate per unit
volume. Typically, this bound only affects fires whose value of Q∗ is less than one4.

Once the heat release rate is computed, the mixture fraction variables are updated:

Z1
n+1 = Z1

n− q̇′′′∆t
ρ∆H

; Z2
n+1 = Z2

n +
q̇′′′∆t
ρ∆H

(6.35)

Note that the total fuel mass is conserved in this process; Z = Z1 +Z2 is still a conserved quantity.

2Note that the user has control over the parameters associated with local gas phase extinction.
3Note that for DNS, FDS imposes a less restrictive upper bound on the local heat release rate per unit volume. It is

q̇′′′max = 200/δx+2500 kW/m3 (6.34)

The value of 200 kW/m2 is an upper bound on the heat release rate per unit area of flame sheet.
4The non-dimensional quantity, Q∗, is a measure of the fire’s heat release rate divided by the area of its base. It is expressed as

Q∗ = Q̇/(ρ∞cpT∞

√
gDD2).
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Two-Step, Fast-Slow Reaction

When the mixture fraction is divided into three components, Z1, Z2, and Z3, there are two chemical reactions
that convert Z1 to Z2 and Z2 to Z3. Recall from Section 6.1.3 that this represents two-step combustion
(fuel to CO and CO to CO2). The first step occurs as it does for the two-parameter mixture fraction with
a modified heat of combustion that accounts for the conversion of fuel to CO rather than CO2. The second
step is performed for all grid cells that contain CO and O2. If q̇′′′ 6= 0 in a grid cell after the first step, then
additional heat is released according to

q̇′′′CO = min
[

max(ρZ2,sρYO2)
δt

∆HCO , q̇′′′max− q̇′′′
]

(6.36)

If q̇′′′ = 0 after the first step, then it is presumed that the cell is out of the combustion region (say in the upper
layer of smoke-filled compartment), and a finite-rate reaction computation is performed to convert CO to
CO2 (see the next section for a discussion of the algorithm for computing a finite-rate reaction). The q̇′′′CO
computed using the finite-rate reaction is still limited by q̇′′′max. Once q̇′′′CO is computed the mixture fraction
variables are updated:

Z2
n+1 = Z2

n− q̇′′′CO∆t
ρ∆HCO

; Z3
n+1 = Z3

n +
q̇′′′CO∆t

ρ∆HCO

(6.37)
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6.2 Finite-Rate, Multiple-Step Combustion Model

In a DNS calculation, the fine grid resolution enables the direct modeling of the diffusion of chemical species
(fuel, oxygen, and combustion products). Since the flame is being resolved in a DNS calculation, the local
gas temperatures can be used to determine the reaction kinetics. Thus, it is possible to implement a relatively
simple set of one or more chemical reactions to model the combustion. Consider the reaction of oxygen and
a hydrocarbon fuel

CxHy +νO2 O2 −→ νCO2 CO2 +νH2O H2O (6.38)

If this were modeled as a single-step reaction, the reaction rate would be given by the expression

d[CxHy]
dt

=−B [CxHy]a [O2]b e−E/RT (6.39)

Suggested values of B, E, a and b for various hydrocarbon fuels are given in Refs. [48, 49]. It should be
understood that the implementation of any of these one-step reaction schemes is still very much a research
exercise because it is not universally accepted that combustion phenomena can be represented by such a
simple mechanism. Improved predictions of the heat release rate may be possible by considering a multi-
step set of reactions. However, each additional gas species defined in the computation incurs a roughly 5 %
increase in the CPU time.

For finite-rate chemistry, it is assumed that the chemical reaction time scale is much shorter than any
convective or diffusive transport time scale. Thus, it makes sense to calculate the consequences of the
reaction assuming all other processes are frozen in a state corresponding to the beginning of the time step.
For each grid cell, at the start of a time step where t = tn and Y n

CxHy,i jkρi jk/WF ≡ XF(tn) and Y n
O2,i jkρi jk/WO2 ≡

XO2(t
n), the following set of ODEs is solved numerically with a second-order Runge-Kutta scheme

dXF

dt
= −B XF(t)a XO2(t)

b e−E/RTi jk (6.40)

dXO2

dt
= −νO2

νF

dXF

dt
(6.41)

The temperature Ti jk and density ρi jk are fixed at their values at time tn and the ODEs are iterated from tn to
tn+1 in about 20 time steps. The pre-exponential factor B, the activation energy E, and the exponents a and
b are input parameters which are in typically assigned the values of νF and νO2 . At the end of each sub-time
step the values of XF and XO2 are updated.

The average heat release rate over the entire time step is given by

q̇
′′′n
i jk = ∆H ρ

n
i jk

YF(tn)−YF(tn+1)
δt

(6.42)

where δt = tn+1− tn. The species mass fractions are adjusted at this point in the calculation (before the
convection and diffusion update)

Y n
α,i jk = Yα(tn)− ναWα

νF WF

(
YF(tn)−YF(tn+1)

)
(6.43)

If multiple chemical reactions have been specified, equations 6.40 and 6.41 are evaluated for each reaction
during each of the 100 time steps. The reactions are evaluated in the order that they are entered in the input
file.
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Chapter 7

Thermal Radiation

Energy transport consists of convection, conduction and radiation. Convection of heat is accomplished via
the solution of the basic conservation equations. Gains and losses of heat via conduction and radiation are
represented by the divergence of the heat flux vector in the energy equation, ∇ · q̇′′. This section describes
the equations associated with the radiative part, q̇′′r .

7.1 Radiation Transport Equation

The Radiative Transport Equation (RTE) for an absorbing/emitting and scattering medium is

s ·∇Iλ(x,s) =−
[
κ(x,λ)+σs(x,λ)

]
Iλ(x,s)+B(x,λ)+

σs(x,λ)
4π

∫
4π

Φ(s,s′) Iλ(x,s′) ds′ (7.1)

where Iλ(x,s) is the radiation intensity at wavelength λ, s is the direction vector of the intensity, κ(x,λ) and
σs(x,λ) are the local absorption and scattering coefficients, respectively, and B(x,λ) is the emission source
term. The integral on the right hand side describes the in-scattering from other directions. In the case of a
non-scattering gas the RTE becomes

s ·∇Iλ(x,s) = κ(x,λ)
[
Ib(x)− Iλ(x,s)

]
(7.2)

where Ib(x) is the source term given by the Planck function (see below).
In practical simulations the spectral (λ) dependence cannot be solved accurately. Instead, the radiation

spectrum is divided into a relatively small number of bands and a separate RTE is derived for each band.
The band specific RTE is

s ·∇In(x,s) = κn(x) [Ib,n(x)− In(x,s)] , n = 1...N (7.3)

where In is the intensity integrated over the band n, and κn is the appropriate mean absorption coefficient
inside the band. The source term can be written as a fraction of the blackbody radiation

Ib,n = Fn(λmin,λmax) σ T 4/π (7.4)

where σ is the Stefan-Boltzmann constant. The calculation of factors Fn is explained in Ref. [19]. When the
intensities corresponding to the bands are known, the total intensity is calculated by summing over all the
bands

I(x,s) =
N

∑
n=1

In(x,s) (7.5)
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Even with a reasonably small number of bands, solving multiple RTEs is very time consuming. For-
tunately, in most large-scale fire scenarios soot is the most important combustion product controlling the
thermal radiation from the fire and hot smoke. As the radiation spectrum of soot is continuous, it is pos-
sible to assume that the gas behaves as a gray medium. The spectral dependence is then lumped into one
absorption coefficient (N = 1) and the source term is given by the blackbody radiation intensity

Ib(x) = σT (x)4/π (7.6)

This is the default mode of FDS and appropriate for most problems of fire engineering. In optically thin
flames, where the amount of soot is small compared to the amount of CO2 and water, the gray gas assumption
may produce significant overpredictions of the emitted radiation. From a series of numerical experiments it
has been found that six bands (N = 6) are usually enough to improve the accuracy in these cases. The limits
of the bands are selected to give an accurate representation of the most important radiation bands of CO2
and water. If the absorption of the fuel is known to be important, separate bands can be reserved for fuel,
and the total number of bands is increased to nine (N = 9). For simplicity, the fuel is assumed to be CH4.
The limits of the bands are shown in Table 7.1.

Table 7.1: Limits of the spectral bands.

9 Band Model 1 2 3 4 5 6 7 8 9
Soot CO2 CH4 Soot CO2 H2O H2O Soot SootMajor Species

H2O, Soot Soot Soot Soot CH4, Soot
ν (1/cm) 10000 3800 3400 2800 2400 2174 1429 1160 1000 50
λ (µm) 1.00 2.63 2.94 3.57 4.17 4.70 7.00 8.62 10.0 200

6 Band Model 1 2 3 4 5 6
Soot CO2 CH4 CO2 H2O, CH4, Soot SootMajor Species

H2O, Soot Soot Soot

For the calculation of the gray or band-mean absorption coefficients, κn, a narrow-band model, Rad-
Cal [50], has been implemented in FDS. At the start of a simulation the absorption coefficient(s) are tabulated
as a function of mixture fraction and temperature. During the simulation the local absorption coefficient is
found by table-lookup.

In calculations of limited spatial resolution, the source term, Ib, in the RTE requires special treatment in
the neighborhood of the flame sheet because the temperatures are smeared out over a grid cell and are thus
considerably lower than one would expect in a diffusion flame. Because of its fourth-power dependence
on the temperature, the source term must be modeled in those grid cells cut by the flame sheet. Elsewhere,
there is greater confidence in the computed temperature, and the source term can be computed directly

κ Ib =
{

κσT 4/π Outside flame zone
max(χr q̇′′′/4π , κσT 4/π) Inside flame zone

(7.7)

Here, q̇′′′ is the chemical heat release rate per unit volume and χr is an empirical estimate of the local fraction
of that energy emitted as thermal radiation.1 Near the flame in large scale calculations, neither κ nor T can
be computed reliably, hence the inclusion of the empirical radiation loss term which is designed to partition
the fire’s heat release rate in accordance with measured values.

1The radiative fraction, χr, is a useful quantity in fire science. Usually, it is understood to be the fraction of the total heat
release rate that takes the form of thermal radiation. For most combustibles, χr is between 0.3 and 0.4. However, in Eq. (7.7), χr is
interpreted as the fraction of energy radiated from the combustion region. For a small fire (D < 1 m), the local χr is approximately
equal to its global counterpart. However, as the fire increases in size, the global value will typically decrease due to a net re-
absorption of the thermal radiation by the increasing smoke mantle.
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The radiant heat flux vector q̇′′r is defined

q̇′′r (x) =
∫

4π

s′ I(x,s′) ds′ (7.8)

The gas phase contribution to the radiative loss term in the energy equation is

−∇ · q̇′′r (x)(gas) = κ(x) [U(x)−4π Ib(x)] ; U(x) =
∫

4π

I(x,s′)ds′ (7.9)

In words, the net radiant energy gained by a grid cell is the difference between that which is absorbed and
that which is emitted.

7.2 Numerical Method

This section describes how ∇ · q̇′′r (the radiative loss term) is computed at all gas-phase cells, and how the
the radiative heat flux q̇′′r is computed at solid boundaries.

The radiative transport equation (7.3) is solved using techniques similar to those for convective transport
in finite volume methods for fluid flow [51], thus the name given to it is the Finite Volume Method (FVM).
More details of the model implementation can be found from [52]. To obtain the discretized form of the
RTE, the unit sphere is divided into a finite number of solid angles. In each grid cell a discretized equation
is derived by integrating Eq. (7.3) over the volume of cell i jk and the control angle δΩl , to obtain∫

δΩl

∫
Vi jk

s′ ·∇I(x′,s′)dx′ds′ =
∫

δΩl

∫
Vi jk

κ(x′)
[
Ib(x′)− I(x′,s′)

]
dx′ds′ (7.10)

The volume integral on the left hand side is replaced by a surface integral over the cell faces using the
divergence theorem. Note that the procedure outlined below is appropriate for each band of a wide band
model, thus the subscript n has been removed for clarity.

Assuming that the radiation intensity I(x,s) is constant on each of the cell faces, the surface integral can
be approximated by a sum over the cell faces. Assuming further that I(x,s) is constant within the volume
Vi jk and over the angle δΩl we obtain

6

∑
m=1

Am Il
m

∫
Ωl

(s′ ·nm)ds′ = κi jk

[
Ib,i jk− Il

i jk

]
Vi jk δΩ

l (7.11)

where

Il
i jk radiant intensity in direction l

Il
m radiant intensity at cell face m

Ib,i jk radiant blackbody Intensity in cell
δΩl solid angle corresponding to direction l
Vi jk volume of cell i jk
Am area of cell face m
nm unit normal vector of the cell face m

Note that while the intensity is assumed constant within the angle δΩl , its direction covers the angle δΩl

exactly.The local incident radiation intensity is

Ui jk =
NΩ

∑
l=1

Il
i jkδΩ

l (7.12)
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In Cartesian coordinates2, the normal vectors nm are the base vectors of the coordinate system and the
integrals over the solid angle do not depend on the physical coordinate, but the direction only. The intensities
on the cell boundaries, Il

m, are calculated using a first-order upwind scheme. If the physical space is swept
in the direction sl , the intensity Il

i jk can be directly obtained from an algebraic equation. This makes the
numerical solution of the FVM very fast. Iterations are needed only to account for the reflective boundaries.
However, this is seldom necessary in practice, because the time step set by the flow solver is small.

The grid used for the RTE solver is the same as for the fluid solver. The coordinate system used to
discretize the solid angle is shown in Figure 7.1. The discretization of the solid angle is done by dividing

φ

s

x

z

y

θ

Figure 7.1: Coordinate system of the angular discretization.

first the polar angle, θ, into Nθ bands, where Nθ is an even integer. Each θ-band is then divided into Nφ(θ)
parts in the azimuthal (φ) direction. Nφ(θ) must be divisible by 4. The numbers Nθ and Nφ(θ) are chosen to
give the total number of angles NΩ as close to the value defined by the user as possible. NΩ is calculated as

NΩ =
Nθ

∑
i=1

Nφ(θi) (7.13)

The distribution of the angles is based on empirical rules that try to produce equal solid angles δΩl = 4π/NΩ.
The number of θ-bands is

Nθ = 1.17 N1/2.26
Ω

(7.14)

rounded to the nearest even integer. The number of φ-angles on each band is

Nφ(θ) = max
{

4,0.5NΩ

[
cos(θ−)− cos(θ+)

]}
(7.15)

rounded to the nearest integer that is divisible by 4. θ− and θ+ are the lower and upper bounds of the θ-
band, respectively. The discretization is symmetric with respect to the planes x = 0, y = 0, and z = 0. This
symmetry has three important benefits: First, it avoids the problems caused by the fact that the first-order
upwind scheme, used to calculate intensities on the cell boundaries, is more diffusive in non-axial directions
than axial. Second, the treatment of the mirror boundaries becomes very simple, as will be shown later.
Third, it avoids so called “overhang” situations, where s · i, s · j or s ·k changes sign inside the control angle.
These “overhangs” would make the resulting system of linear equations more complicated.

2In the axisymmetric case equation (7.11) becomes a little bit more complicated, as the cell face normal vectors nm are not
always constant. However, the computational efficiency can still be retained.
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In the axially symmetric case these “overhangs” can not be avoided, and a special treatment, developed
by Murthy and Mathur [53], is applied. In these cases Nφ(θi) is kept constant, and the total number of angles
is NΩ = Nθ×Nφ. In addition, the angle of the vertical slice of the cylinder is chosen to be same as δφ.

The cell face intensities, Il
m appearing on the left hand side of (7.11) are calculated using a first order

upwind scheme. Consider, for example, a control angle having a direction vector s. If the radiation is
traveling in the positive x-direction, i.e. s · i ≥ 0, the intensity on the upwind side, Il

xu is assumed to be the
intensity in the neighboring cell, Il

i−1 jk, and the intensity on the downwind side is the intensity in the cell
itself Il

i jk.
On a rectilinear grid, the normal vectors nm are the base vectors of the coordinate system and the

integrals over the solid angle can be calculated analytically. Equation (7.11) can be simplified

al
i jkIl

i jk = al
xIl

xu +al
yIl

yu +al
zI

l
zu +bl

i jk (7.16)

where

al
i jk = Ax|Dl

x|+Ay|Dl
y|+Az|Dl

z|+κi jk Vi jkδΩ
l (7.17)

al
x = Ax|Dl

x| (7.18)

al
y = Ay|Dl

y| (7.19)

al
z = Az|Dl

z| (7.20)

bl
i jk = κi jk Ib,i jk Vi jk δΩ

l (7.21)

δΩ
l =

∫
Ωl

dΩ =
∫

δφ

∫
δθ

sinθ dθ dφ (7.22)

Dl
x =

∫
Ωl

(sl · i)dΩ (7.23)

=
∫

δφ

∫
δθ

(sl · i)sinθ dθdφ

=
∫

δφ

∫
δθ

cosφsinθsinθ dθdφ

=
1
2
(
sinφ

+− sinφ
−)[

∆θ−
(
cosθ

+ sinθ
+− cosθ

− sinθ
−)]

Dl
y =

∫
Ωl

(sl · j)dΩ (7.24)

=
∫

δφ

∫
δθ

sinφsinθsinθ dθdφ

=
1
2
(
cosφ

−− cosφ
+)[

∆θ−
(
cosθ

+ sinθ
+− cosθ

− sinθ
−)]

Dl
z =

∫
Ωl

(sl ·k)dΩ (7.25)

=
∫

δφ

∫
δθ

cosθsinθ dθdφ

=
1
2

∆φ

[(
sinθ

+)2−
(
sinθ

−)2
]

Here i, j and k are the base vectors of the Cartesian coordinate system. θ+, θ−, φ+ and φ− are the upper and
lower boundaries of the control angle in the polar and azimuthal directions, respectively, and ∆θ = θ+−θ−
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and ∆φ = φ+−φ−. In the cells next to a wall, the areas Am of the faces, that are perpendicular to the wall,
are multiplied by 0.5.

The solution method of (7.16) is based on an explicit marching sequence [54]. The marching direction
depends on the propagation direction of the radiation intensity. As the marching is done in the “down-
wind” direction, the “upwind” intensities in all three spatial directions are known, and the intensity Il

i jk can
be solved directly. Iterations may be needed only with the reflective walls and optically thick situations.
Currently, no iterations are made.

7.3 Boundary Conditions

The boundary condition for the radiation intensity leaving a gray diffuse wall is given as

Iw(s) =
εσT 4

w

π
+

1− ε

π

∫
s′·nw<0

Iw(s′) |s′ ·nw| ds′ (7.26)

where Iw(s) is the intensity at the wall, ε is the emissivity, and Tw is the wall surface temperature.
In discretized form, the boundary condition on a solid wall is given as

Il
w = ε

σT 4
w

π
+

1− ε

π
∑

Dl′
w<0

Il′
w |Dl′

w| (7.27)

where Dl′
w =

∫
Ωl′ (s ·nw)dΩ. The constraint Dl′

w < 0 means that only the “incoming” directions are taken into
account when calculating the reflection. The net radiative heat flux on the wall is

q̇′′r =
NΩ

∑
l=1

Il
w

∫
δΩl

(s′ ·nw)ds′ =
NΩ

∑
l=1

Il
wDl

n (7.28)

where the coefficients Dl
n are equal to ±Dl

x, ±Dl
y or ±Dl

z, and can be calculated for each wall element at the
start of the calculation.

The open boundaries are treated as black walls, where the incoming intensity is the black body intensity
of the ambient temperature. On mirror boundaries the intensities leaving the wall are calculated from the
incoming intensities using a predefined connection matrix:

Il
w,i jk = Il′ (7.29)

Computationally intensive integration over all the incoming directions is avoided by keeping the solid angle
discretization symmetric on the x, y and z planes. The connection matrix associates one incoming direction
l′ to each mirrored direction on each wall cell.
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Chapter 8

Solid Phase

FDS assumes that solid obstructions consist of multiple layers, with each layer composed of multiple mate-
rial components that can undergo multiple thermal degradation reactions. Each reaction forms a combina-
tion of solid residue (i.e. another material component), water vapor, and/or fuel vapor. Heat conduction is
assumed only in the direction normal to the surface. This section describes the single mass and energy con-
servation equation for solid materials, plus the various coefficients, source terms, and boundary conditions,
including the computation of the convective heat flux q̇′′c at solid boundaries.

8.1 The Heat Conduction Equation for a Solid

A one-dimensional heat conduction equation for the solid phase temperature Ts(x, t) is applied in the direc-
tion x pointing into the solid (the point x = 0 represents the surface)1

ρscs
∂Ts

∂t
=

∂

∂x
ks

∂Ts

∂x
+ q̇′′′s (8.2)

Section 8.1.4 describes the component-averaged material properties, ks and ρscs. The source term, q̇′′′s ,
consists of chemical reactions and radiative absorption:

q̇′′′s = q̇′′′s,c + q̇′′′s,r (8.3)

Section 8.2 describes the term q̇′′′s,c, which is essentially the heat production (loss) rate given by the pyrolysis
models for different types of solid and liquid fuels. Section 8.1.2 describes the term q̇′′′s,r, the radiative
absorption and emission in depth. Section 8.1.3 describes the convective heat transfer to the solid surface.

8.1.1 Numerical Model

A one dimensional heat transfer calculation is performed at each solid boundary cell for which the user has
prescribed thermal properties. The solid can consist of multiple layers of materials. Each layer is partitioned

1In cylindrical and spherical coordinates, the heat conduction equation is written

ρscs
∂Ts

∂t
=

1
r

∂

∂r

(
rks

∂Ts

∂r

)
+ q̇′′′s ; ρscs

∂Ts

∂t
=

1
r2

∂

∂r

(
r2ks

∂Ts

∂r

)
+ q̇′′′s (8.1)

FDS offers the user these options, with the assumption that the obstruction is not actually recti-linear, but rather cylindrical or
spherical in shape. This option is useful in describing the behavior of small, complicated “targets” like cables or heat detection
devices.
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into non-uniform cells, clustered near the front and back faces. The smallest cells are chosen based on the
criteria

δx < Ss

√
ks

ρscs
(8.4)

where Ss is a cell size factor defined by the user. By default, Ss is 1.0. Interior cells increase in size by a
user-defined stretch factor when moving inwards from the surfaces. By default, the stretch factor is 2.0. The
cell boundaries are located at points xi. The temperature at the center of the ith cell is denoted Ts,i. The
(temperature-dependent) thermal conductivity of the solid at the center of the ith cell is denoted ks,i. The
temperatures are updated in time using an implicit Crank-Nicolson scheme

T n+1
s,i −T n

s,i

δt
=

1
2(ρscs)iδxi

(
ks,i+ 1

2

T n
s,i+1−T n

s,i

δxs,i+ 1
2

− ks,i− 1
2

T n
s,i−T n

s,i−1

δxs,i− 1
2

+

ks,i+ 1
2

T n+1
s,i+1−T n+1

s,i

δxi+ 1
2

− ks,i− 1
2

T n+1
s,i −T n+1

s,i−1

δxi− 1
2

)
+

q̇′′′s
ρscs

(8.5)

for 1≤ i≤ N. The width of each cell is δxi. The distance from the center of cell i to the center of cell i+1
is δxi+ 1

2
. However, the material properties ks, cs, ρs and source terms q̇′′′s are updated in an explicit manner,

using the temperature information from time step n.
The boundary condition on the front surface is

−ks
∂Ts

∂x
(0, t) = q̇′′c + q̇′′r (8.6)

If the internal radiation is solved for a solid, the radiation boundary condition q̇′′r is not used.
On the back surface, two possible boundary condition types may be specified by the user. (1) If the back

surface is assumed to be open either to an ambient void or to another part of the computational domain,
the back side boundary condition is similar to that of the front side. (2) If the back side is assumed to be
perfectly insulated, an adiabatic boundary condition is used

ks
∂Ts

∂x
= 0 (8.7)

The boundary condition is discretized

−ks,1
T n+1

s,1 −T n+1
s,0

δx 1
2

= q̇′′c
(n+1) + q̇′′r

(n+1) (8.8)

The convective flux at the next time step is computed as

q̇′′c
(n+1) = h

(
Tg−0.5

(
T n

s, 1
2
+T n+1

s, 1
2

))
(8.9)

and the radiative flux at the next time step is approximated with a linearized form

q̇′′r
(n+1) ≈ q̇′′r

n−4 ε σ T n3

s, 1
2

(
T n+1

s, 1
2
−T n

s, 1
2

)
(8.10)

The wall temperature is defined Tw ≡ Ts, 1
2
= (Ts,0 +Ts,1)/2.

The size and number of solid phase cells can change during the course of a calculation as solid material
is converted to gas. The size of each cell is reduced such that the cell density remains equal to the density
of the virgin material. If the cell size gets below a pre-defined threshold (1 µm), the cell is completely
removed. Following cell shrinking or cell removal, the solid phase mesh is re-gridded and the mass and
enthalpy values are interpolated from the old mesh to the new mesh.
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8.1.2 Radiation Heat Transfer to Solids

If it is assumed that the thermal radiation from the surrounding gases is absorbed within an infinitely thin
layer at the surface of the solid obstruction, then the net radiative heat flux is the sum of incoming and
outgoing components, q̇′′r = q̇′′r,in− q̇′′r,out , where:

q̇′′r,in = ε

∫
s′·nw<0

Iw(s′) |s′ ·nw| dΩ (8.11)

q̇′′r,out = εσT 4
w (8.12)

However, many common materials do not have infinite optical thickness. Rather, the radiation penetrates
the material to some finite depth. The radiative transport within the solid (or liquid) can be described as
a source term in Eq. (8.2). A “two-flux” model based on the Schuster-Schwarzschild approximation [19]
assumes the radiative intensity is constant inside the “forward” and “backward” hemispheres. The transport
equation for the intensity in the “forward” direction is

1
2

dI+(x)
dx

= κs
(
Ib− I+(x)

)
(8.13)

where x is the distance from the material surface and κs is the absorption coefficient

κs =
Nm

∑
α=1

Xα κs,α (8.14)

A corresponding formula can be given for the “backward” direction. Multiplying Eq. 8.13 by π gives us the
“forward” radiative heat flux into the solid

1
2

dq̇+
r (x)
dx

= κs
(
σT 4

s − q̇+
r (x)

)
(8.15)

The radiative source term in the heat conduction equation is a sum of the “forward” and “backward” flux
gradients

q̇′′′s,r(x) =
dq̇+

r (x)
dx

+
dq̇−r (x)

dx
(8.16)

The boundary condition for Eq. 8.15 at the solid (or liquid) surface is given by

q̇+
r (0) = q̇′′r,in +(1− ε) q̇−r (0) (8.17)

where q̇−r (0) is the “backward” radiative heat flux at the surface. In this formulation, the surface emissivity
and the internal absorption are assumed to be independent properties of the material.

8.1.3 Convective Heat Transfer to Solids

The calculation of the convective heat flux depends on whether one is performing a Direct Numerical Sim-
ulation (DNS) or a Large Eddy Simulation (LES). In a DNS calculation, the convective heat flux to a solid
surface q̇′′c is obtained directly from the gas temperature gradient at the boundary

q̇′′c =−k
∂T
∂n

=−k
Tw−Tg

δn/2
(8.18)

where k is the thermal conductivity of the gas, n is the spatial coordinate pointing into the solid, δn is the
normal grid spacing, Tg is the gas temperature in the center of the first gas phase cell, and Tw is the wall
surface temperature.
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In an LES calculation, the convective heat flux to the surface is obtained from a combination of natural
and forced convection correlations

q̇′′c = h(Tg−Tw) W/m2 ; h = max
[

C |Tg−Tw|
1
3 ,

k
L

0.037 Re
4
5 Pr

1
3

]
W/m2/K (8.19)

where C is the coefficient for natural convection (1.52 for a horizontal surface and 1.31 for a vertical sur-
face) [17], L is a characteristic length related to the size of the physical obstruction, k is the thermal con-
ductivity of the gas, and the Reynolds Re and Prandtl Pr numbers are based on the gas flowing past the
obstruction. Since the Reynolds number is proportional to the characteristic length, L, the heat transfer
coefficient is weakly related to L. For this reason, L is taken to be 1 m for most calculations.

8.1.4 Component-Averaged Thermal Properties

The conductivity and volumetric heat capacity of the solid are defined

ks =
Nm

∑
α=1

Xα ks,α ; ρscs =
Nm

∑
α=1

ρs,α cs,α (8.20)

Nm is the number of material components forming the solid. ρs,α is the component density

ρs,α = ρsYα (8.21)

where ρs is the density of the composite material and Yα is the mass fraction of material component α. The
solid density is the sum of the component densities

ρs =
Nm

∑
α=1

ρs,α (8.22)

Xα is the volume fraction of component α

Xα =
ρs,α

ρα

/
Nm

∑
α′=1

ρs,α′

ρα′
(8.23)

where ρα is the density of material α in its pure form. Multi-component solids are defined by specifying the
mass fractions, Yα, and densities, ρα, of the individual components of the composite.

8.2 Pyrolysis Models

This section describes how solid phase reactions and the chemical source term in the solid phase heat con-
duction equation, q̇′′′s,c, are modeled. This is what is commonly referred to as the “pyrolysis model,” but
it actually can represent any number of reactive processes, including evaporation, charring, and internal
heating.

8.2.1 Specified Heat Release Rate

Often the intent of a fire simulation is merely to predict the transport of smoke and heat from a specified fire.
In other words, the heat release rate is a user input, not something the model predicts. In these instances, the
desired HRR is translated into a mass flux for fuel at a given solid surface, which can be thought of as the
surface of a burner:

ṁ′′f =
f (t) q̇′′user

∆H
(8.24)

Usually, the user specifies a desired heat release rate per unit area, q̇′′user, plus a time ramp, f (t), and the
mass loss rate is computed accordingly.
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8.2.2 Solid Fuels

Solids can undergo simultaneous reactions under the following assumptions:

• instantaneous release of volatiles from solid to the gas phase,

• local thermal equilibrium between the solid and the volatiles,

• no condensation of gaseous products, and

• no porosity effects2

Each material component may undergo several competing reactions, and each of these reactions may pro-
duce some other solid component (residue) and gaseous volatiles according to the yield coefficients νs and
νg,γ, respectively. These coefficients should usually satisfy νs + ∑γ νg,γ = 1, but smaller yields may also be
used to take into account the gaseous products that are not explicitly included in the simulation.

Consider material component α that undergoes Nr,α separate reactions. We will use the index β to
represent one of these reactions:

Materialα→ νs,αβ Residueαβ +νg,αβ,w H2O+νg,αβ, f HC (8.25)

In this his particular reaction, condenced phase residue, water vapor and hydrocarbon fuel are produced.
The local density of material component α evolves in time according to the solid phase species conser-

vation equation
∂

∂t

(
ρs,α

ρs0

)
=−

Nr,α

∑
β=1

rαβ +Sα (8.26)

which says that the mass of conponent α is consumed by the solid phase reactions rαβ and produced by
other reactions. rαβ is the rate of reaction β in units (1/s) and ρs0 is the initial density of the material layer.
Sα is the production rate of material component α as a result of the reactions of the other components. The
reaction rates are functions of local mass concentration and temperature, and calculated as a combination of
Arrhenius and power functions:

rαβ =
(

ρs,α

ρs0

)ns,αβ

Aαβ exp
(
−

Eαβ

RTs

)
max

[
0,Ts−Tthr,αβ

]nt,αβ (8.27)

where Tthr,αβ is a threshold temperature that can be used to dictate that the reaction must not occur below
a user-specified temperature. By default, the term is deactivated (Tthr,αβ = 0 K). The chapter on pyrolysis
in the FDS Verification Guide describes methods for determining the kinetic parameters Aαβ and Eαβ using
bench-scale measurement techniques.

The production term Sα is the sum over all the reactions where the solid residue is material α

Sα =
Nm

∑
α′=1

Nr,α′

∑
β=1

νs,α′β rα′β (where Residueα′β = Materialα) (8.28)

The volumetric production rate of each gaseous volatile is

ṁ′′′γ = ρs0

Nm

∑
α=1

Nr,α

∑
β=1

νg,αβ,γ rαβ (8.29)

2Although porosity effects are not explicitly included in the model, it is possible to account for it because the volume fractions
defined by Eq. (8.23) need not sum to unity, in which case the thermal conductivity and absorption coefficient are effectively
reduced.
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It is assumed that the gases are transported instantaneously to the surface, where the mass fluxes are given
by: 3

ṁ′′γ =
∫ L

0
ṁ′′′γ (x)dx (8.31)

where L is the thickness of the surface. The chemical source term of the heat conduction equation consists
of the heats of reaction

q̇′′′s,c(x) =−ρs0

Nm

∑
α=1

Nr,α

∑
β=1

rαβ(x)Hr,αβ (8.32)

8.2.3 Liquid Fuels

The rate at which liquid fuel evaporates when burning is a function of the liquid temperature and the con-
centration of fuel vapor above the pool surface. According to the Clausius-Clapeyron relation, the volume
fraction of the fuel vapor above the surface is a function of the liquid boiling temperature

X f = exp
[
−

hvWf

R

(
1
Ts
− 1

Tb

)]
(8.33)

where hv is the heat of vaporization, Wf is the molecular weight, Ts is the surface temperature, and Tb is the
boiling temperature of the fuel [55].

In the beginning of the simulation, an initial guess is made for the fuel vapor mass flux

ṁ′′i =
V̇ ′′i Wf

R Ta/p0
(8.34)

where V̇ ′′i is the initial vapor volume flux, defined by the user (default V̇ ′′i = 5 · 10−4 m3/(sm2)). During
the simulation, the evaporation mass flux is updated based on the difference between current close-to-the-
surface volume fraction of fuel vapor and the equilibrium value given by Eq. 8.33.

For simplicity, the liquid fuel itself is treated like a thermally-thick solid for the purpose of computing
the heat conduction. There is no computation of the convection of the liquid within the pool.

3In cylindrical and spherical coordinates, the mass fluxes are

ṁ′′γ =
1
R

∫ R

0
ṁ′′′γ (x)rdr ; ṁ′′γ =

1
R2

∫ R

0
ṁ′′′γ (x)r2dr (8.30)
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Chapter 9

Lagrangian Particles

Lagrangian particles are used to represent a wide variety of objects that cannot be resolved on the numerical
grid. Some are solid; some are liquid. This chapter outlines the treatment of the transport, size distribution,
and mass, momentum and energy transfer of the droplets or particles.

9.1 Droplet/Particle Transport in the Gas Phase

For a spray, the force term fb in Eq. (3.3) represents the momentum transferred from the droplets to the gas.
It is obtained by summing the force transferred from each droplet in a grid cell and dividing by the cell
volume

fb =
1
2

∑ρCDπr2
d(ud−u)|ud−u|
δxδyδz

(9.1)

where CD is the drag coefficient, rd is the droplet radius, ud is the velocity of the droplet, u is the velocity
of the gas, ρ is the density of the gas, and δxδyδz is the volume of the grid cell. The acceleration of an
individual droplet is governed by the equation

d
dt

(mdud) = md g− 1
2

ρCD πr2
d (ud−u)|ud−u| (9.2)

where md is the mass of the droplet. The trajectory of the droplet is governed by the equation

dxd

dt
= ud (9.3)

The drag coefficient (default based on a sphere) is a function of the local Reynolds number (based on droplet
diameter)

CD =


24/Red Red < 1
24
(
0.85+0.15Re0.687

d

)
/Red 1 < Red < 1000

0.44 1000 < Red

(9.4)

Red =
ρ |ud−u|2rd

µ(T )
(9.5)

where µ(T ) is the dynamic viscosity of air at temperature T .
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9.2 Droplet Size Distribution

A spray consists of a sampled set of spherical droplets. The size distribution is expressed in terms of its Cu-
mulative Volume Fraction (CVF), a function that relates the fraction of the liquid volume (mass) transported
by droplets less than a given diameter. Researchers at Factory Mutual have suggested that the CVF for a
sprinkler may be represented by a combination of log-normal and Rosin-Rammler distributions [56]

F(d) =

 1√
2π

∫ d

0

1
σd′ e

− [ln(d′/dm)]2

2σ2 dd′ (d ≤ dm)

1− e−0.693( d
dm )γ

(dm < d)
(9.6)

where dm is the median droplet diameter (i.e. half the mass is carried by droplets with diameters of dm or
less), and γ and σ are empirical constants equal to about 2.4 and 0.6, respectively.1 The median droplet
diameter is a function of the sprinkler orifice diameter, operating pressure, and geometry. Research at
Factory Mutual has yielded a correlation for the median droplet diameter [57]

dm

D
∝ We−

1
3 (9.7)

where D is the orifice diameter of the sprinkler. The Weber number, the ratio of inertial forces to surface
tension forces, is given by

We =
ρdu2

dD
σd

(9.8)

where ρd is the density of liquid, ud is the discharge velocity, and σd is the liquid surface tension (72.8×10−3

N/m at 20 ◦C for water). The discharge velocity can be computed from the mass flow rate, a function of the
sprinkler’s operating pressure and orifice coefficient known as the “K-Factor.” FM reports that the constant
of proportionality in Eq. (9.7) appears to be independent of flow rate and operating pressure. Three different
sprinklers were tested in their study with orifice diameters of 16.3 mm, 13.5 mm, 12.7 mm and the constants
were approximately 4.3, 2.9, 2.3, respectively. The strike plates of the two smaller sprinklers were notched,
while that of the largest sprinkler was not [57].

In real sprinkler systems, the operating pressure is affected by the number of open nozzles. Typically,
the pressure in the piping is high when the first sprinkler activates, and decreases when more and more
sprinkler heads are activated. The pipe pressure has an effect on flow rate, droplet velocity and droplet size
distribution. FDS tries not to predict the variation of pipe pressure; it should be specified by the user; but the
following dependencies are used to update the droplet boundary conditions for mass flow ṁ, droplet speed
ud and median diameter dm

ṁ ∝
√

p (9.9)

ud ∝
√

p (9.10)

dm ∝ p−1/3 (9.11)

In the numerical algorithm, the size of the droplets are chosen to mimic the Rosin-Rammler/log-normal
distribution. A Probability Density Function (PDF) for the droplet diameter is defined

f (d) =
F ′(d)

d3

/∫
∞

0

F ′(d′)
d′3

dd′ ; F ′ ≡ dF
dd

(9.12)

1The Rosin-Rammler and log-normal distributions are smoothly joined if σ = 2/(
√

2π(ln 2) γ) = 1.15/γ .
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Figure 9.1: Cumulative Volume Fraction and Cumulative Number Fraction functions of the droplet size
distribution from a typical industrial-scale sprinkler. The median diameter dm is 1 mm, σ = 0.6 and γ = 2.4.

Droplet diameters are randomly selected by equating the Cumulative Number Fraction of the droplet distri-
bution with a uniformly distributed random variable U

U(d) =
∫ d

0
f (d′)dd′ (9.13)

Figure 9.1 displays typical Cumulative Volume Fraction and Cumulative Number Fraction functions.
In most cases, a sampled set of the droplets or particles is explicitly tracked in the model. The procedure

for selecting droplet sizes is as follows: Suppose the mass flow rate of the liquid is ṁ. Suppose also that the
time interval for droplet insertion into the numerical simulation is δt, and the number of droplets inserted
each time interval is N. Choose N uniformly distributed random numbers between 0 and 1, call them Ui,
obtain N droplet diameters di based on the given droplet size distribution, Eq. (9.13), and then compute a
weighting constant C from the mass balance

ṁ δt = C
N

∑
i=1

4
3

πρw

(
di

2

)3

(9.14)

The mass and heat transferred from each droplet will be multiplied by the weighting factor C.

9.3 Heating and Evaporation of Liquid Droplets

Liquid “droplets” are represented either as discrete airborne spheres propelled through the gas, or as rectan-
gular blocks that collectively form a thin liquid film on solid objects. These “droplets” are still individually
tracked as lagrangian particles, but the heat and mass transfer coefficients are different. In the discussion to
follow, the term “droplets” will be used to describe either form.

Over the course of a time step of the gas phase solver, the droplets in a given grid cell evaporate as a
function of the liquid equilibrium vapor mass fraction, Yl , the local gas phase vapor mass fraction, Yg, the
(assumed uniform) liquid temperature, Tl , and the local gas temperature, Tg. If the droplet is attached to a
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surface, Ts is the solid temperature. The mass and energy transfer between the gas and the liquid can be
described by the following set of equations [58]

dml

dt
=−A hm ρ(Yl−Yg) (9.15)

ml cl
dTl

dt
= Ah(Tg−Tl)+Ahs (Ts−Tl)+ q̇r +

dml

dt
hv (9.16)

Here, ml is the mass of the liquid droplet (or that fraction of the surface film associated with the formerly
airborne droplet), A is the surface area of the liquid droplet (or that fraction of the film exposed to the gas
and to the wall), hm is the mass transfer coefficient to be discussed below, ρ is the gas density, cl is the
liquid specific heat, h is the heat transfer coefficient between the liquid and the gas, hs is the heat transfer
coefficient between the liquid and the solid surface, q̇r is the rate of radiative heating of the droplet, and hv

is the latent heat of vaporization of the liquid. The vapor mass fraction of the gas, Yg, is obtained from the
gas phase mass conservation equations, and the liquid equilibrium vapor mass fraction is obtained from the
Clausius-Clapeyron equation

Xl = exp
[

hvWl

R

(
1
Tb
− 1

Tl

)]
; Yl =

Xl

Xl (1−Wa/Wl)+Wa/Wl
(9.17)

where Xd is the equilibrium vapor volume fraction, Wl is the molecular weight of the evaporated liquid, Wa is
the molecular weight of air, R is the universal gas constant, and Tb is the boiling temperature of the liquid.

Mass and heat transfer between liquid and gas are described with analogous empirical correlations. The
mass transfer coefficient, hm, is described by the empirical relationships [18]:

hm =
Sh Dlg

L
; Sh =

 2+0.6 Re
1
2
D Sc

1
3 droplet

0.037 Re
4
5
L Sc

1
3 film

(9.18)

Sh is the Sherwood number, Dlg is the binary diffusion coefficient between the liquid vapor and the sur-
rounding gas (usually assumed air), L is a length scale equal to either the droplet diameter or 1 m for a
surface film, ReD is the Reynolds number of the droplet (based on the diameter, D, and the relative air-
droplet velocity), ReL is the Reynolds number based on the length scale L, and Sc is the Schmidt number
(ν/Dlg, assumed 0.6 for all cases).

An analogous relationship exists for the heat transfer coefficient:

h =
Nu k

L
; Nu =

 2+0.6 Re
1
2
D Pr

1
3 droplet

0.037 Re
4
5
L Pr

1
3 film

(9.19)

Nu is the Nusselt number, k is the thermal conductivity of the gas, and Pr is the Prandtl number (assumed
0.7 for all cases).

The exchange of mass and energy between liquid droplets and the surrounding gases (or solid surfaces)
is computed droplet by droplet. After the temperature of each droplet is computed, the appropriate amount
of vaporized liquid is added to the given mesh cell, and the cell gas temperature is reduced slightly based on
the energy lost to the droplet.

Equation (9.16) is solved semi-implicitly over the course of a gas phase time step as follows. Note that
a few terms have been left out to make the algorithm more clear.

T n+1
l −T n

l
δt

=
1

ml cl

[
Ah

(
Tg−

T n+1
l +T n

l
2

)
−Ahm ρ

(
Y n+1

l +Y n
l

2
−Yg

)
hv

]
(9.20)
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The equilibrium vapor mass fraction, Y n
l , is a function of T n

l via Eq. (9.17), and its value at the next time
step is approximated via

Y n+1
l ≈ Y n

l +
(

dYl

dTl

)n (
T n+1

l −T n
l

)
(9.21)

where the derivative of Yl with respect to temperature is obtained via the chain rule:

dYl

dTl
=

dYl

dXl

dXl

dTl
=

Wa/Wl

(Xl(1−Wa/Wl)+Wa/Wl)2
hvWl

R T 2
l

exp
[

hvWl

R

(
1
Tb
− 1

Tl

)]
(9.22)

The amount of evaporated liquid is given by

δml = δt Ahm ρ

[
Y n

l +
1
2

(
dYl

dTl

)n (
T n+1

l −T n
l

)]
(9.23)

The amount of heat extracted from the gas is

δq = δt Ah

(
Tg−

T n
l +T n+1

l
2

)
(9.24)

9.4 Absorption and Scattering of Thermal Radiation by Droplets

The attenuation of thermal radiation by liquid droplets is an important consideration, especially for water
mist systems [59]. Liquid droplets attenuate thermal radiation through a combination of scattering and
absorption [60]. The radiation-droplet interaction must therefore be solved for both the accurate prediction
of the radiation field and for the droplet energy balance.

If the gas phase absorption and emission in Eq. (7.1) are temporarily neglected for simplicity, the radia-
tive transport equation becomes

s ·∇Iλ(x,s) =− [κd(x,λ)+σd(x,λ)] Iλ(x,s)+κd(x,λ) Ib,d(x,λ)+
σd(x,λ)

4π

∫
4π

Φ(s,s′) Iλ(x,s′) ds′ (9.25)

where κd is the droplet absorption coefficient, σd is the droplet scattering coefficient and Ib,d is the emission
term of the droplets. Φ(s,s′) is a scattering phase function that gives the scattered intensity from direction
s′ to s. The local absorption and scattering coefficients are calculated from the local droplet number density
N(x) and mean diameter dm(x) as

κd(x,λ) = N(x)
∫

∞

0
f (r,dm(x)) Ca(r,λ) dr (9.26)

σd(x,λ) = N(x)
∫

∞

0
f (r,dm(x)) Cs(r,λ) dr (9.27)

where r is the droplet radius and Ca and Cs are absorption and scattering cross sections, respectively, given
by Mie theory. The droplet number density function f (r,dm) is assumed to have the same form as the initial
droplet size distribution, but a mean diameter depending on the location x. For the numerical implementa-
tion, the above equations are written in the form

κd(x,λ) = Ad(x)
∫

∞

0

f (r,dm(x)) Ca(r,λ)
π(dm(x)/2)2 dr (9.28)

σd(x,λ) = Ad(x)
∫

∞

0

f (r,dm(x)) Cs(r,λ)
π(dm(x)/2)2 dr (9.29)
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where Ad is the total cross sectional area per unit volume of the droplets. Ad is computed simply by summing
the cross sectional areas of all the droplets within a cell and divided by the cell volume. For practical reasons,
a relaxation factor of 0.5 is used to smooth slightly the temporal variation of Ad .

An accurate computation of the in-scattering integral on the right hand side of Eq. (9.25) would be
extremely time consuming. It is here approximated by dividing the total 4π solid angle to a “forward angle”
δΩl and “ambient angle” δΩ∗ = 4π− δΩl . For compatibility with the FVM solver, δΩl is set equal to the
control angle given by the angular discretization. However, it is assumed to be symmetric around the center
of the control angle. Within δΩl the intensity is Iλ(x,s) and elsewhere it is approximated as

U∗(x,λ) =
U(x,λ)−δΩl Iλ(x,s)

δΩ∗
(9.30)

where U(x) is the total integrated intensity. The in-scattering integral can now be written as

σd(x,λ)
4π

∫
4π

Φ(s,s′) Iλ(x,s′) dΩ
′ = σd(x,λ) [χ f Iλ(x,s)+(1−χ f )U∗(x,λ)] (9.31)

where χ f = χ f (r,λ) is a fraction of the total intensity originally within the solid angle δΩl that is scattered
into the same angle δΩl . Defining an effective scattering coefficient section

σd(x,λ) =
4πN(x)

4π−δΩl

∫
∞

0
(1−χ f ) Cs(r,λ) dr (9.32)

the spray RTE becomes

s ·∇Iλ(x,s) =− [κd(x,λ)+σd(x,λ)] Iλ(x,s)+κd(x,λ) Ib,d(x,λ)+
σd(x,λ)

4π
U(x,λ) (9.33)

This equation can be integrated over the spectrum to get the band specific RTE’s. The procedure is exactly
the same as that used for the gas phase RTE. After the band integrations, the spray RTE for band n becomes

s ·∇In(x,s) =− [κd,n(x)+σd,n(x)] In(x,s)+κd,n(x) Ib,d,n(x)+
σd(x,λ)

4π
Un(x) (9.34)

where the source function is based on the average droplet temperature within a cell. The droplet contribution
to the radiative loss term is

−∇ · q̇′′r (x)(droplets) = κd(x) [U(x)−4π Ib,d(x)] (9.35)

For each individual droplet, the radiative heating/cooling power is computed as

q̇r =
md

ρd(x)
κd(x) [U(x)−4π Ib,d(x)] (9.36)

where md is the mass of the droplet and ρd(x) is the total density of droplets in the cell.
The absorption and scattering cross sections and the scattering phase function are calculated using the

MieV code developed by Wiscombe [61]. Currently, the spectral data is only included for water. The
values of the imaginary part of the complex refractive index (related to absorption coefficient) are taken
from Ref. [62]. Value 1.33 is used for the real part (index of refraction).

Before the actual simulation, both κd and σd are averaged over the possible droplet radii and wavelength.
A constant “radiation” temperature, Trad , is used in the wavelength averaging. Trad should be selected
to represent a typical radiating flame temperature. A value of 1173 K is used by default. The averaged
quantities, now functions of the droplet mean diameter only, are stored in one-dimensional arrays. During
the simulation, the local properties are found by table look-up using the local mean droplet diameter.
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The computation of χ f for a similar but simpler situation has been derived in Ref. [63]. It can be shown
that here χ f becomes

χ f =
1

δΩl

∫ µl

0

∫ µl

0

∫ µd,π

µd,0

P0(θd)

[(1−µ2)(1−µ′2)− (µd−µµ′)2]1/2 dµd dµdµ′ (9.37)

where µd is a cosine of the scattering angle θd and P0(θd) is a single droplet scattering phase function

P0(θd) =
λ2
(
|S1(θd)|2 + |S2(θd)|2

)
2Cs(r,λ)

(9.38)

S1(θd) and S2(θd) are the scattering amplitudes, given by Mie-theory. The integration limit µl is a cosine of
the polar angle defining the boundary of the symmetric control angle δΩl

µl = cos(θl) = 1− 2
NΩ

(9.39)

The limits of the innermost integral are

µd,0 = µµ′+
√

1−µ2
√

1−µ′2 ; µd,π = µµ′−
√

1−µ2
√

1−µ′2 (9.40)

When χ f is integrated over the droplet size distribution to get an averaged value, it is multiplied by Cs(r,λ).
It is therefore |S1|2 + |S2|2, not P0(θd), that is integrated. Physically, this means that intensities are added,
not probabilities [61].

9.5 Fire Suppression by Water

The previous two sections describe heat transfer from a droplet of water to a hot gas, a hot solid, or both.
Although there is some uncertainty in the values of the respective heat transfer coefficients, the fundamental
physics are fairly well understood. However, when the water droplets encounter burning surfaces, simple
heat transfer correlations become more difficult to apply. The reason for this is that the water is not only
cooling the surface and the surrounding gas, but it is also changing the pyrolysis rate of the fuel. If the
surface of the fuel is planar, it is possible to characterize the decrease in the pyrolysis rate as a function of
the decrease in the total heat feedback to the surface. Unfortunately, most fuels of interest in fire applications
are multi-component solids with complex geometry at scales unresolvable by the computational grid.

9.5.1 Droplet Transport on a Surface

When a liquid droplet hits a solid horizontal surface, it is assigned a random horizontal direction and moves
at a fixed velocity until it reaches the edge, at which point it drops straight down at the same fixed velocity.
This “dripping” velocity has been measured for water to be on the order of 0.5 m/s [64, 65]. While attached
to a surface, the “droplet” is assumed to form a thin film of liquid that transfers heat to the solid, and heat
and mass to the gas.

9.5.2 Reduction of Pyrolysis Rate due to Water

To date, most of the work in this area has been performed at Factory Mutual. An important paper on
the subject is by Yu et al. [66]. The authors consider dozens of rack storage commodity fires of different
geometries and water application rates, and characterize the suppression rates in terms of a few global
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parameters. Their analysis yields an expression for the total heat release rate from a rack storage fire after
sprinkler activation

Q̇ = Q̇0 e−k(t−t0) (9.41)

where Q̇0 is the total heat release rate at the time of application t0, and k is a fuel-dependent constant. For
the FMRC Standard Plastic commodity k is given as

k = 0.716 ṁ′′w−0.0131 s−1 (9.42)

where ṁ′′w is the flow rate of water impinging on the box tops, divided by the area of exposed surface (top
and sides). It is expressed in units of kg/m2/s. For the Class II commodity, k is given as

k = 0.536 ṁ′′w−0.0040 s−1 (9.43)

Unfortunately, this analysis is based on global water flow and burning rates. Equation (9.41) accounts
for both the cooling of non-burning surfaces as well as the decrease in heat release rate of burning surfaces.
In the FDS model, the cooling of unburned surfaces and the reduction in the heat release rate are computed
locally. Thus, it is awkward to apply a global suppression rule. However, the exponential nature of suppres-
sion by water is observed both locally and globally, thus it is assumed that the local burning rate of the fuel
can be expressed in the form [64, 65]

ṁ′′f (t) = ṁ′′f ,0(t) e−
∫

k(t)dt (9.44)

Here ṁ′′f ,0(t) is the burning rate per unit area of the fuel when no water is applied and k(t) is a linear function
of the local water mass per unit area, m′′w, expressed in units of kg/m2,

k(t) = a m′′w(t) s−1 (9.45)

Note that a is an empirical constant.

9.6 Beyond Droplets – Using Lagrangian Particles to Model Complex Ob-
jects

There are many real objects that participate in a fire that cannot be modeled easily as solid obstructions
that conform to the rectilinear mesh. For example, electrical cables, dry brush, tree branches and so on, are
potential fuels that cannot be well-represented as solid cubes, not only because the geometry is wrong, but
also because the solid restricts the movement of hot gases through the complex collection of objects. As a
potential remedy for the problem, these objects can be modeled as discrete particles that are either spheres,
cylinders or small sheets. Each particle can be assigned a surface type in much the same way as is done for
solid obstructions that conform to the numerical grid. The particle is assumed to be thermally-thick, but for
simplicity the heat conduction within the particle is assumed to be one-dimensional in either a cylindrical,
spherical or cartesian coordinate system.

It is assumed that the particles interact with the surrounding gas via an additional source term in the
energy conservation equation. For a grid cell with indices i jk, the source term is:

(−∇ · q̇′′r )i jk = ∑
[
κp
(
Ui jk−4σT 4

p
)]

(9.46)

where the summation is over all the particles within the cell. The effective absorption coefficient for a single
particle is given by

κp =
A

4δxδyδz
(9.47)
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where A is the surface area of the particle and δxδyδz is the volume of the cell. The net radiative heat flux
onto the surface of the particle is

q̇′′r,p = ε

(
Ui jk

4
−σT 4

p

)
(9.48)
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Chapter 10

Fire Detection Devices

FDS predicts the thermal environment resulting from a fire, but it relies on various empirical models that
describe the activation of various fire detection devices. These models are described in this section.

10.1 Sprinklers

The temperature of the sensing element (or “link”) of an automatic fire sprinkler is estimated from the
differential equation put forth by Heskestad and Bill [67], with the addition of a term to account for the
cooling of the link by water droplets in the gas stream from previously activated sprinklers

dTl

dt
=

√
|u|

RTI
(Tg−Tl)−

C
RTI

(Tl−Tm)− C2

RTI
β|u| (10.1)

Here Tl is the link temperature, Tg is the gas temperature in the neighborhood of the link, Tm is the temper-
ature of the sprinkler mount (assumed ambient), and β is the volume fraction of (liquid) water in the gas
stream. The sensitivity of the detector is characterized by the value of RTI. The amount of heat conducted
away from the link by the mount is indicated by the “C-Factor”, C. The RTI and C-Factor are determined
experimentally. The constant C2 has been empirically determined by DiMarzo and co-workers [68, 69, 70]
to be 6×106 K/(m/s)

1
2 , and its value is relatively constant for different types of sprinklers.

The algorithm for heat detector activation is exactly the same as for sprinkler activation, except there
is no accounting for conductive losses or droplet cooling. Note that neither the sprinkler nor heat detector
models account for thermal radiation.

10.2 Heat Detectors

As far as FDS is concerned, a heat detector is just a sprinkler with no water spray. In other words, the
activation of a heat detector is governed by Eq. (10.1), but with just the first term on the right hand side:

dTl

dt
=

√
|u|

RTI
(Tg−Tl) (10.2)

Both the RTI and activation temperature are determined empirically.

10.3 Smoke Detectors

An informative discussion of the issues associated with smoke detection can be found in the SFPE Handbook
chapter “Design of Detection Systems,” by Schifiliti, Meacham and Custer [20]. The authors point out that
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the difficulty in modeling smoke detector activation stems from a number of issues: (1) the production and
transport of smoke in the early stage of a fire are not well-understood, (2) detectors often use complex
response algorithms rather than simple threshold or rate-of-change criteria, (3) detectors can be sensitive to
smoke particle number density, size distribution, refractive index, composition, etc., and (4) most computer
models, including FDS, do not provide detailed descriptions of the smoke besides its bulk transport. This
last point is the most important. At best, in its present form, FDS can only provide to an activation algorithm
the velocity and smoke concentration of the ceiling jet flowing past the detector. Regardless of the detailed
mechanism within the device, any activation model included within FDS can only account for the entry
resistance of the smoke due to the geometry of the detector. Issues related to the effectiveness of ionization
or photoelectric detectors cannot be addressed by FDS.

Consider the simple idealization of a “spot-type” smoke detector. A disk-shaped cover lined with a fine
mesh screen forms the external housing of the device, which is usually mounted to the ceiling. Somewhere
within the device is a relatively small sensing chamber where the smoke is actually detected in some way.
A simple model of this device has been proposed by Heskestad [20]. He suggested that the mass fraction of
smoke in the sensing chamber of the detector Yc lags behind the mass fraction in the external free stream Ye

by a time period δt = L/u, where u is the free stream velocity and L is a length characteristic of the detector
geometry. The change in the mass fraction of smoke in the sensing chamber can be found by solving the
following equation:

dYc

dt
=

Ye(t)−Yc(t)
L/u

(10.3)

The detector activates when Yc rises above a detector-specific threshold.
A more detailed model of smoke detection involving two filling times rather than one has also been

proposed. Smoke passing into the sensing chamber must first pass through the exterior housing, then it must
pass through a series of baffles before arriving at the sensing chamber. There is a time lag associated with
the passing of the smoke through the housing and also the entry of the smoke into the sensing chamber. Let
δte be the characteristic filling time of the entire volume enclosed by the external housing. Let δtc be the
characteristic filling time of the sensing chamber. Cleary et al. [71] suggested that each characteristic filling
time is a function of the free-stream velocity u outside the detector

δte = αeuβe ; δtc = αcuβc (10.4)

The α’s and β’s are empirical constants related to the specific detector geometry The change in the mass
fraction of smoke in the sensing chamber Yc can be found by solving the following equation:

dYc

dt
=

Ye(t−δte)−Yc(t)
δtc

(10.5)

where Ye is the mass fraction of smoke outside of the detector in the free-stream. A simple interpretation of
the equation is that the concentration of the smoke that enters the sensing chamber at time t is that of the
free-stream at time t−δte.

An analytical solution for Eq. (10.5) can be found, but it is more convenient to simply integrate it
numerically as is done for sprinklers and heat detectors. Then, the predicted mass fraction of smoke in the
sensing chamber, Yc(t), can be converted into an expression for the percent obscuration per unit length by
computing: (

1− e−κρYcl
)
×100 (10.6)

where κ is the specific extinction coefficient, ρ is the density of the external gases in the ceiling jet, and
l is the preferred unit of length (typically 1 m or 1 ft). For most flaming fuels, a suggested value for κ is
8700 m2/kg ± 1100 m2/kg at a wavelength of 633 nm [72].
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The SFPE Handbook has references to various works on smoke detection and suggested values for the
characteristic length L. FDS includes the one parameter Heskestad model as a special case of the four
parameter Cleary model. For the Cleary model, one must set αe, βe, αc, and βc, whereas for the Heskestad
model only L = αc needs to be specified. Eq. (10.5) is still used, with αe = 0 and βe = βc =−1. Proponents
of the four-parameter model claim that the two filling times are needed to better capture the behavior of
detectors in a very slow free-stream (u < 0.5 m/s). Rather than declaring one model better than another, the
algorithm included in FDS allows the user to pick these various parameters, and in so doing, pick whichever
model the user feels is appropriate [73].

Additionally, FDS can model the behavior of beam and aspiration smoke detectors. For a beam detector
the user specifies the emitter and receiver positions and the total obscuration at which the detector will alarm.
FDS will then integrate the obscuration over the path length using the predicted soot concentration in each
grid cell along the path. For an aspiration detector the user specifies the sampling locations, the flow rate at
each location, the transport time from each sampling point to the detector, the flow rate of any bypass flow,
and the total obscuration at which the detector will alarm. FDS will compute that soot concentration at the
detector by weighting the predicted soot concentrations at the sampling locations with their flow rates after
applying the appropriate time delay.
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Chapter 11

Heating, Ventilation, and Air Conditioning
(HVAC)

HVAC systems are found throughout the built environment. During a fire, HVAC ducts can serve as a path
for heat and combustion products to be moved through a building. In some facilities, such as data centers
and clean rooms, fire detection devices are placed inside of HVAC ducts. Lastly, HVAC systems may
serve as part of the fire protection system for a building when used to exhaust smoke or maintain stairwell
pressurization.

Previous versions of FDS, have only had the ability to specify either fixed flow boundary conditions (ve-
locity or mass flux) or a simple pressure boundary condition. While these inputs could adequately represent
very simple HVAC features, they could not model an entire multi-room system. There was no coupling of
the mass, momentum, and energy solutions amongst the multiple inlets and outlets comprising the HVAC
network. To address this limitation, an HVAC network solver has been added to FDS.

11.1 HVAC Governing Equations

The overall HVAC solver is based on the MELCOR [74] thermal hydraulic solver. MELCOR is a computer
code for simulating accidents in nuclear power plant containment buildings. The Fire and Smoke Simulator
(FSSIM) [75], a network fire model, has shown prior success in using the MELCOR solver to model fire
spread and smoke movement in the presence of complex ventilation systems.

The MELCOR solver uses an explicit conservation of mass and energy combined with an implicit solver
for the conservation of momentum. An HVAC system is represented as network of nodes and ducts where a
node represents where a duct joins with the FDS computational domain or where multiple ducts are joined
such as a tee. A duct segment in the network represents any continuous flow path not interrupted by a node
and as such may include multiple fittings (elbows, expansion or contractions, etc.) and may have varying
area over its length. The current implementation of the model does not account for mass storage with an
HVAC network. The nodal conservation equations are:

Mass:

∑
j connected to node i

ρ ju jA j = 0 (11.1)

Energy:

∑
j connected to node i

ρ ju jA jh j = 0 (11.2)
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Momentum:

ρ jL j
du j

dt
= (Pi−Pk)+(ρg∆z) j +∆Pj−

1
2

K jρ j
∣∣u j
∣∣u j (11.3)

where u is the duct velocity, A is the duct area, h is the enthalpy of the fluid in the duct, the subscript
j indicates a duct segment, the subscripts i and k indicate nodes (where one or more ducts join or where a
duct terminates in a compartment), ∆P is a fixed source of momenumt (a fan or blower), L is the length of
the duct segment, and K is the friction loss of the duct segement.

Since nodes have no volume, the mass and energy conservation equations are merely that what flows
into a node, must also flow out of the node. In the momentum equation the terms on the right hand side are:
the pressure gradient between the upstream and the downstream node, the buoyancy head, pressure rise due
to an external source (e.g. a fan or blower), and the pressure losses due to wall friction or the presence of
duct fittings.

11.2 HVAC Solution Procedure

The momentum equation, Eq. 11.3, is non-linear with respect to velocity due to the loss term. Additionally,
the pressure difference between two nodes in the network is impacted by the pressure change at all nodes
coupled to that duct either directly (part of the same duct network) or indirectly (connected to the same
compartment as another duct network). Solving the momentum equation, requries accounting for both of
these. This is done with the following discretization:

un
j = un+1

j
∆tn

ρ jL j

(
P̃n

i − P̃n
k
)
+(ρg∆z)n−1

j +∆Pn−1
j − 1

2
K j

(∣∣∣un−
j −un+

j

∣∣∣un−
∣∣∣un+

j

∣∣∣un−
j

)
(11.4)

The superscripts n+ and n− on the velocity are used to linearize the flow loss in a duct to avoid a non-
linear differential equation for velocity. The n+ superscript is the prior iteration value and the n− is either
the prior iteration value or zero if flow reversal occurred. This approach, rather than un

j
2, is used to speed

convergence when duct flows are near zero to avoid large changes in K if the forward and reverse losses are
markededly different.

Note that the node pressures are not expressed as Pn
i , but rather as P̃n

i . This indicates an extrapolated
pressure at the end of the current timestep rather than the actual end of time step pressure. The pressure
in a compartment is a function of the mass and energy flows into and out of that compartment. If that
compartment is connected to other compartments by doors or other openings, then the pressure is also
dependent upon flows into and out those other compartments. Those mass and energy flows include both
those being predicted by the HVAC model and those being predicted by the CFD model. For example, in ??,
the un-shaded compartments have pressure solutions that are dependent upon the flows predicted by both
the HVAC model and the CFD model and all of those compartments need to be included in the extrapolated
pressure for those compartments. Since the two models are not fully coupled, the extrapolated pressure is
an estimate of the pressure at the end of the time step based upon the pressure rise for the prior time step.

The extrapolated pressure for a compartment can be determined by using 4.9 and correcting the integral
over velocity for the current solution of all interdependent HVAC flows into or out of an FDS pressure zone:

P̃n
i = Pn−1

i +

(
dPn−1

i
dt

+
∑ j in zone mun−1

j An−1
j −∑ j in zone mun

jA
n
j∫

Ωm
P dV

)
∆tn (11.5)
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Figure 11.1: Illustration of interdependent pressure solutions. All unshaded compartments have pressures that are
dependent upon each other.
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If we seperate the HVAC sovled velocities into a pressure zone from the FDS solved velocities into a
pressure zone and then substitute 11.5 into 11.4 we obtain the following:

un
j

(
1+ f racK j2L j

∣∣∣un−
j −un+

j

∣∣∣)− ∆tn2

ρ jL j

∑ j in zone iun
jA

n
j −∑ j in zone kun

jA
n
j∫

Ωm
P dV

= un−1
j +

∆tn2

ρ jL j

(
P̃n

i,non−HVAC− P̃n
k,non−HVAC +(ρg∆z) j +∆Pj

)
+ f racK j2L j

∣∣∣un+
j

∣∣∣ ∣∣∣un−
j

∣∣∣
(11.6)

If node i or node k for duct j in 11.6 is an internal duct node, then extrapolated pressures are not
computed and the actual node pressure is solved for. Applying 11.6 to each duct results in a linear set of
equations. Adding additional equations to the set for the mass conservation at internal duct nodes, results in
complete set of equations.

The solution scheme is as follows. Determine the boundary conditions at all points where the HVAC
network joins the FDS computational domain using the previous timestep values. Compute the extrapolated
pressures for each pressure zone using the previous iteration (previous timestep if the first iteration). Assem-
ble the linear set of equations for conservation of momentum and conservation of mass. Solve the equation
and check the solution for errors in mass conservation, flow reversal over the time step, and the magnitude
of change in the velocity solution for each duct. If any convergence check fails, the solution is re-iterated
wiht new extrapolated pressures. Densities and enthalpies are taken as the upwind values in each iteration.

11.3 HVAC Boundary Conditions (Coupling the HVAC solver to the FDS
solver)
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Chapter 12

Conclusion

The equations and numerical algorithm described in this document form the core of an evolving fire model.
As research into specific fire-related phenomena continues, the relevant parts of the model can be improved.
Because the model was originally designed to predict the transport of heat and exhaust products from fires,
it can be used reliably when the fire is prescribed and the numerical grid is sufficiently resolved to capture
enough of the flow structure for the application at hand. It is the job of the user to determine what level of
accuracy is needed.

Any user of the numerical model must be aware of the assumptions and approximations being employed.
There are two issues for any potential user to consider before embarking on calculations. First, for both real
and simulated fires, the growth of the fire is very sensitive to the thermal properties (conductivity, specific
heat, density, burning rate, etc.) of the surrounding materials. Second, even if all the material properties are
known, the physical phenomena of interest may not be simulated due to limitations in the model algorithms
or numerical grid. Except for those few materials that have been studied to date at NIST, the user must supply
the thermal properties of the materials, and then validate the performance of the model with experiments to
ensure that the model has the necessary physics included. Only then can the model be expected to predict
the outcome of fire scenarios that are similar to those that have actually been tested.
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Appendix A

Nomenclature

As droplet surface area
Aαβ pre-exponential factor for solid phase Arrhenius reaction
B pre-exponential factor for gas phase Arrhenius reaction
C Sprinkler C-Factor
CD drag coefficient
Cs Smagorinsky constant (LES)
cs Solid material specific heat
cp constant pressure specific heat
D diffusion coefficient
dm median volumetric droplet diameter
E activation energy
fb external force vector (excluding gravity)
g acceleration of gravity
g gravity vector, normally (0,0,−g)
H total pressure divided by the density
Hr,αβ heat of reaction for a solid phase reaction
h enthalpy; heat transfer coefficient
hα enthalpy of species α

h0
α heat of formation of species α

I radiation intensity
Ib radiation blackbody intensity
k thermal conductivity; suppression decay factor
ṁ′′′b,α mass production rate of species α by evaporating droplets/particles
ṁ′′f fuel mass flux
ṁ′′′α mass production rate of species α per unit volume
ṁ′′w water mass flux
m′′w water mass per unit area
Nu Nusselt number
Pr Prandtl number
p pressure
p0 atmospheric pressure profile
pm background pressure of mth pressure zone
p̃ pressure perturbation
q̇′′ heat flux vector
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q̇′′′ heat release rate per unit volume
q̇′′r radiative flux to a solid surface
q̇′′c convective flux to a solid surface
Q̇ total heat release rate
Q∗ characteristic fire size
R universal gas constant
Re Reynolds number
rd droplet radius
rαβ solid phase reaction rate
RTI Response Time Index of sprinkler
s unit vector in direction of radiation intensity
Sc Schmidt number
Sh Sherwood number
Sα solid component production rate
T temperature
t time
U integrated radiant intensity
u = (u,v,w) velocity vector
Wα molecular weight of gas species α

W molecular weight of the gas mixture
We Weber number
x = (x,y,z) position vector
Xα volume fraction of species α

Yα mass fraction of species α

Y ∞
O2

mass fraction of oxygen in the ambient
Y I

F mass fraction of fuel in the fuel stream
ys soot yield
Z mixture fraction
Z f stoichiometric value of the mixture fraction
γ ratio of specific heats; Rosin-Rammler exponent
∆H heat of combustion
∆HO2 energy released per unit mass oxygen consumed
δ wall thickness
ε dissipation rate
κ absorption coefficient
µ dynamic viscosity
να stoichiometric coefficient, species α

νs yield of solid residue in solid phase reaction
νg,γ yield of gaseous species γ in solid phase reaction
ρ density
τi j viscous stress tensor
χr radiative loss fraction
σ Stefan-Boltzmann constant; constant in droplet size distribution; surface tension
σd droplet scattering coefficient
σs scattering coefficient
ω = (ωx,ωy,ωz) vorticity vector
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Appendix B

Derivation of the Velocity Divergence
Constraint

In this appendix we derive the divergence of the velocity field as presented in Eq. (4.6). Note that the
constitutive relationships presented here for the mass diffusion and thermal heat fluxes are valid for direct
numerical simulations (i.e., well-resolved calculations). The minor modifications required of the transport
coefficients for large-eddy simulation are presented in Section 5.2. We start the derivation by rearranging the
continuity equation. Next, we differentiate the equation of state to reveal the relationship between transport
equations for mass and energy. We then show how the transport equations may be combined to yield the
velocity divergence constraint. In the last section we present the final result in FDS notation.

Continuity Equation

Let ρ denote the fluid mass density; let u = [u,v,w]T denote the fluid mass-average velocity; and let ṁ′′′b
denote a bulk source of mass per unit volume (which may come from the evaporation of water droplets, for
example). The continuity equation may be rearranged to yield the following divergence constraint on the
velocity

∇ ·u =
1
ρ

(
ṁ′′′b −

Dρ

Dt

)
(B.1)

where D( )/Dt ≡ ∂( )/∂t +u ·∇( ) is the material derivative.

Equation of State

We consider the transport of ns species mass fractions Yα for α = {1, . . . ,ns}, ns−1 of which are independent.
The molecular weight of a given species is denoted Wα and the molecular weight of the mixture, W , is given
by

W =
(

∑
α

Yα

Wα

)−1

(B.2)

where as a shorthand notation, which is used throughout this document, we write ∑α for ∑
ns
α=1. Let pi(x, t)

denote the hydrostatic pressure in the ith zone of the domain, which in general we take to be a function
of space and time. In practice, however, pi = pi(t) for closed (i.e., sealed or pressurized) domains and
pi = pi(z), where z represents the coordinate aligned with the gravity vector, for large, open domains (e.g.,
forest fires large enough to interact with the stratified atmosphere). The divergence constraint derived below
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is based on the ideal gas equation of state (EOS), which, for low-Mach flows, we write as

pi =
ρR T

W
(B.3)

where R = 8.3145 kJ/(kmol K) is the gas law constant.
Differentiating the EOS (B.3) we obtain

Dpi

Dt
= ρR T

D
Dt

(
1

W

)
+

ρR
W

DT
Dt

+
R T
W

Dρ

Dt
(B.4)

which rearranges to
Dρ

Dt
=

W
R T

Dpi

Dt
−ρW

D
Dt

(
1

W

)
− ρ

T
DT
Dt

(B.5)

Species Transport Equation

The species transport equation plays a role in both the second and third terms on the RHS of (B.5). Including
the bulk mass source, the evolution of species mass fractions is governed by

∂(ρYα)
∂t

+∇ · (ρYαu) =−∇ ·Jα + ṁ′′′α + ṁ′′′b,α (B.6)

where Jα is the diffusive mass flux vector for species α (relative to the mass-average velocity), ṁ′′′α is the
chemical mass production rate of α per unit volume [kg-α produced /(sec m3)], and ṁ′′′b,α is the bulk mass
source of α per unit volume [kg-α introduced /(sec m3)]. Note that

∑
α

ṁ′′′b,α = ṁ′′′b (B.7)

and
∑
α

ṁ′′′α = 0 (B.8)

Additionally, by construction, the ith component of the species diffusive fluxes sum to zero,

∑
α

Jα,i = 0 (B.9)

Thus, as must be the case, summing (B.6) over α yields the continuity equation.
It is convenient to work in terms of the material derivative of the mass fraction. Care must be exercised

in obtaining this expression because the continuity equation is of a non-standard form. Expanding (B.6) we
obtain

ρ
∂Yα

∂t
+Yα

∂ρ

∂t
+ρu ·∇Yα +Yα∇ · (ρu) = −∇ ·Jα + ṁ′′′α + ṁ′′′b,α ,

ρ
DYα

Dt
+Yα

[
∂ρ

∂t
+∇ · (ρu)

]
︸ ︷︷ ︸

ṁ′′′b

= (B.10)

Thus, the material derivative of the mass fraction can be written as

DYα

Dt
=

1
ρ

(
ṁ′′′α + ṁ′′′b,α−Yαṁ′′′b −∇ ·Jα

)
=

1
ρ

(
ṁ′′′α + ṁ′′′b [Yb,α−Yα]−∇ ·Jα

)
(B.11)
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where in the second step we use the identity ṁ′′′b,α = Yαṁ′′′b with Yb,α being the mass fraction of α in the bulk
prior to its introduction into the fluid mixture.

Utilizing (B.2) and (B.11) we obtain

D
Dt

(
1

W

)
=

D
Dt

(
∑
α

Yα

Wα

)
,

= ∑
α

1
Wα

DYα

Dt
,

=
1
ρ

∑
α

1
Wα

(
ṁ′′′α + ṁ′′′b [Yb,α−Yα]−∇ ·Jα

)
, (B.12)

which is needed in the second term on the RHS of (B.5).

Enthalpy Transport Equation

The specific sensible enthalpy of species α relative to reference temperature T0 is

hs,α(T ) =
∫ T

T0

cp,α(T ′)dT ′ , (B.13)

where the specific heat of α is

cp,α ≡
∂hs,α

∂T
. (B.14)

The specific sensible enthalpy of the mixture is then given by

hs(Y,T ) = ∑
α

Yαhs,α(T ) . (B.15)

Neglecting viscous heating and the effect of the fluctuating pressure on dilation work (both assumptions
are valid for low-Mach flows), the transport equation for the sensible enthalpy is

ρ
Dhs

Dt
=−∑

α

∆h0
αṁ′′′α +

Dpi

Dt
−∇ · q̇′′− q̇′′′b + ṁ′′′b (hs,b−hs)+

ṁ′′′b
2
|ub−u|2 (B.16)

where ∆h0
α is the heat of formation of α at reference temperature T0, hs,b is the specific sensible enthalpy of

the bulk mass source, q̇′′′b is a volumetric heat sink due to convective heat transfer to the bulk phase, and q̇′′ is
the heat flux vector which contains contributions from conduction, molecular diffusion of sensible enthalpy,
and radiation,

q̇′′ =−k∇T +∑
α

hs,αJα + q̇′′r (B.17)

Here k is the thermal conductivity of the mixture and q̇′′r is the radiant heat flux. The last term in (B.16)
accounts for the kinetic energy associated with the instantaneous mixing of the bulk and gas-phase momen-
tum.

Relating Enthalpy, Temperature, and Species

Using the chain rule of calculus, we may expand the derivative of the sensible enthalpy hs(Y,T ) to obtain

Dhs

Dt
=
(

∂hs

∂T

)
DT
Dt

+∑
α

(
∂hs

∂Yα

)
DYα

Dt
(B.18)
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Note that since hs = ∑αYαhs,α we have

∂hs

∂Yα

=
∂

∂Yα
∑
β

(Yβhs,β) = ∑
β

hs,β δαβ = hs,α (B.19)

where δαβ is the Kronecker delta. Also,

∂hs

∂T
=

∂

∂T ∑
α

Yαhs,α = ∑
α

Yα

(
∂hs,α

∂T

)
= ∑

α

Yαcp,α ≡ cp (B.20)

defining the specific heat of the mixture. Thus, by rearranging (B.18) and utilizing (B.19) and (B.20) we
obtain

DT
Dt

=
1
cp

[
Dhs

Dt
−∑

α

hs,α
DYα

Dt

]
(B.21)

Utilizing (B.11) and (B.16) in (B.21) yields

DT
Dt

=
1

ρcp

[
−∑

α

∆h0
αṁ′′′α +

Dpi

Dt
−∇ · q̇′′− q̇′′′b + ṁ′′′b (hs,b−hs)+

ṁ′′′b
2
|ub−u|2

−∑
α

hs,α

{
ṁ′′′α + ṁ′′′b [Yb,α−Yα]−∇ ·Jα

}]
(B.22)

Note that ∑α hs,αṁ′′′b [Yb,α−Yα]− ṁ′′′b (hs,b− hs) = ṁ′′′b ∑αYb,α(hs,α[Tb]− hs,α[T ]) ≈ ṁ′′′b ∑αYb,αcp,α(Tb−T ),
leaving

DT
Dt

=
1

ρcp

[
Dpi

Dt
−∇ · q̇′′− q̇′′′b −∑

α

∆h0
αṁ′′′α −∑

α

hs,α
(
ṁ′′′α −∇ ·Jα

)
+ ṁ′′′b ∑

α

Yb,αcp,α(Tb−T )+
ṁ′′′b
2
|ub−u|2

]
.

Assembling Terms

We now have all the pieces we need to construct the divergence constraint which we introduced in Eq. (B.1).
Using (B.5) in (B.1) we obtain

∇ ·u =
1
ρ

(
ṁ′′′b −

[
W

R T
Dpi

Dt
−ρW

D
Dt

(
1

W

)
− ρ

T
DT
Dt

])
=

1
ρ

ṁ′′′b −
1
pi

Dpi

Dt
+W

D
Dt

(
1

W

)
+

1
T

DT
Dt

(B.23)

where in the second step the EOS (B.3) is used to simplify the second term on the RHS. Using (B.12) and
(B.23) in (B.23) yields

∇ ·u =
1
ρ

ṁ′′′b −
1
pi

Dpi

Dt
+W

[
1
ρ

∑
α

1
Wα

{
ṁ′′′α + ṁ′′′b [Yb,α−Yα]−∇ ·Jα

}]
+

1
T

[
1

ρcp

{
Dpi

Dt
−∇ · q̇′′− q̇′′′b −∑

α

∆h0
αṁ′′′α −∑

α

hs,α
(
ṁ′′′α −∇ ·Jα

)
+ ṁ′′′b ∑

α

Yb,αcp,α(Tb−T )+
ṁ′′′b
2
|ub−u|2

}]
.

(B.24)
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Note that W ∑α(Yα/Wα) = 1 and also W ∑α(Yb,α/Wα) = W/W b, where W b is the molecular weight of the
bulk mixture prior to its introduction into the fluid mixture. Equation (B.24) thus simplifies to

∇ ·u =
(

1
ρcpT

− 1
pi

)
Dpi

Dt
+

1
ρ

[
ṁ′′′b

W
W b

+W ∑
α

1
Wα

{
ṁ′′′α −∇ ·Jα

}]
+

1
ρcpT

[
−∑

α

∆h0
αṁ′′′α −∑

α

hs,α
(
ṁ′′′α −∇ ·Jα

)
−∇ · q̇′′− q̇′′′b + ṁ′′′b ∑

α

Yb,αcp,α(Tb−T )+
ṁ′′′b
2
|ub−u|2

]
.

(B.25)

FDS Notation

The following relationships are used to rearrange (B.25) into the form shown in the FDS Technical Reference
Guide. We employ the binary form of Fick’s law using mixture-averaged diffusivities Dα as a constitutive
relation for the diffusive flux,

Jα =−ρDα∇Yα . (B.26)

Note that summation is not implied over repeated suffixes. The heat release rate per unit volume is defined
by

q̇′′′ ≡−∑
α

ṁ′′′α ∆h0
α . (B.27)

Taking the z direction to be aligned with the gravity vector we have ∂pi/∂z = −ρig, where g = 9.8 m/s2

and ρi is a specified background density for the ith zone. Thus, the material derivative of the background
pressure may be written as

Dpi

Dt
=

∂pi

∂t
−wρig . (B.28)

Hence, utilizing (B.26), (B.27), and (B.28), and noting 1/(ρT ) = R /(W pi) from the EOS, for the ith zone
we may write the divergence (B.25) as

∇ ·u = D−P
∂pi

∂t
(B.29)

where

P =
1
pi

(
1− pi

ρcpT

)
=

1
pi

(
1− R

Wcp

)
(B.30)

and

D =
ṁ′′′b
ρ

W
W b

+
W
ρ

∑
α

∇ · (ρDα∇[Yα/Wα])+
1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)
ṁ′′′α +P wρig

+
R

Wcp pi

[
q̇′′′− q̇′′′b −∇ · q̇′′−∑

α

hs,α∇ ·ρDα∇Yα + ṁ′′′b ∑
α

Yb,αcp,α(Tb−T )+
ṁ′′′b
2
|ub−u|2

]
(B.31)

Equations (B.30) and (B.31) correspond to (4.7) and (4.8) in the FDS Tech Guide. Though, note that at
present the bulk kinetic energy term is not included in the code.

A brief remark on the of the sensible enthalpy hs,α vs. the [chemical + sensible] enthalpy hα = ∆h0
α +

hs,α: The definition of the heat flux vector q̇′′ can be a key source of confusion. When transporting the
sensible enthalpy only, as we are doing here, the heat flux vector does not account for the molecular transport
of the chemical enthalpy (the enthalpy of formation). If we were working in terms of the [chemical +
sensible] enthalpy we would not have a “heat of reaction” q̇′′′, the heat flux vector would account for the
transport of both the chemical and the sensible enthalpies, and the sensible enthalpies in (B.31) would be
replaced by the [chemical + sensible] enthalpy hα.
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Appendix C

A Simple Model of Flame Extinction

Frederick W. Mowrer, Department of Fire Protection Engineering, University of Maryland

A diffusion flame immersed in a vitiated atmosphere will extinguish before consuming all the available
oxygen from the atmosphere. The classic example of this behavior is a candle burning within an inverted jar.
This same concept has been applied within FDS to determine the conditions under which the local ambient
oxygen concentration will no longer support a diffusion flame. In this appendix, the critical adiabatic flame
temperature concept is used to estimate the local ambient oxygen concentration at which extinction will
occur.

Consider a control volume characterized by a bulk temperature, Tm, a mass, m, an average specific heat,
cp, and an oxygen mass fraction, YO2 . Complete combustion of the oxygen within the control volume would
release a quantity of energy given by:

Q = mYO2

(
∆H
rO2

)
(C.1)

where ∆H/rO2 has a relatively constant value of approximately 13100 kJ/kg for most fuels of interest for
fire applications.1 Under adiabatic conditions, the energy released by combustion of the available oxygen
within the control volume would raise the bulk temperature of the gases within the control volume by an
amount equal to:

Q = mcp (Tf −Tm) (C.2)

The average specific heat of the gases within the control volume can be calculated based on the composition
of the combustion products as:

cp =
1

(Tf −Tm) ∑
α

∫ Tf

Tm

cp,α(T )dT (C.3)

To simplify the analysis, the combustion products are assumed to have an average specific heat of 1.2 kJ/kg/K
over the temperature range of interest, a value similar to that of nitrogen, the primary component of the
products. The relationship between the oxygen mass fraction within the control volume and the adiabatic
temperature rise of the control volume is evaluated by equating Eqs. (C.1) and (C.2):

YO2 =
cp(Tf −Tm)

∆H/rO2

(C.4)

If the critical adiabatic flame temperature is assumed to have a constant value of approximately 1700 K for
hydrocarbon diffusion flames, as suggested by Beyler,2 then the relationship between the limiting oxygen

1C. Huggett, “Estimation of the Rate of Heat Release by Means of Oxygen Consumption,” Fire and Materials, Vol. 12, pp. 61-
65, 1980.

2C. Beyler, “Flammability Limits of Premixed and Diffusion Flames,” SFPE Handbook of Fire Protection Engineering (3rd
Ed.), National Fire Protection Association, Quincy, MA, 2003.

101



mass fraction and the bulk temperature of a control volume is given by:

YO2,lim =
cp(Tf ,lim−Tm)

∆H/rO2

≈ 1.2(1700−Tm)
13100

(C.5)

The relationship represented by Eq. (C.5) is shown qualitatively in Fig. 6.2. For a control volume at a
temperature of 300 K, i.e., near room temperature, the limiting oxygen mass fraction would evaluate to
YO2,lim = 0.128. This value is consistent with the measurements of Morehart, Zukoski and Kubota,3 who
measured the oxygen concentration at extinction of flames by dilution of air with combustion products.
They found that flames self-extinguished at oxygen concentrations of 12.4 % to 14.3 %. Note that their
results are expressed as volume, not mass, fractions. Beyler’s chapter in the SFPE Handbook references
other researchers who measured oxygen concentrations at extinction ranging from 12 % to 15 %. The
default value in FDS is 15 %.

3Morehart, J., Zukoski, E., and Kubota, T., “Characteristics of Large Diffusion Flames Burning in a Vitiated Atmosphere,” Third
International Symposium on Fire Safety Science, Elsevier Science Publishers, pp. 575-583, 1991.
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Appendix D

Derivation of the Werner Wengle Wall
Model

R. McDermott, BFRL

To obtain (5.43) we take the first off-wall value of the streamwise velocity to be

ũ =
1

∆z

∫
∆z

0
u(z)dz , (D.1)

and then substitute the WW profile for u(z) and integrate.

Let zm denote the dimensional distance from wall where z+ = 11.81. Equation (D.1) becomes

ũ =
1

∆z

[∫ zm

0
u(z)dz+

∫
∆z

zm

u(z)dz
]

,

=
1

∆z

[∫ zm

0
u+u∗ dz+

∫
∆z

zm

u+u∗ dz
]

,

=
1

∆z

[∫ zm

0
z+u∗ dz+

∫
∆z

zm

A(z+)Bu∗ dz
]

,

=
1

∆z

[∫ zm

0

z
`

u∗ dz+
∫

∆z

zm

A
( z

`

)B
u∗ dz

]
,

=
1

∆z

[∫ zm

0

zρ̄u∗

µ̄
u∗ dz+

∫
∆z

zm

A
(

zρ̄u∗

µ̄

)B

u∗ dz

]
,

=
1

∆z

∫ zm

0

τw

µ̄
zdz︸ ︷︷ ︸

I

+
∫

∆z

zm

A
(

ρ̄

µ̄

)B(
τw

ρ̄

) 1+B
2

zB dz︸ ︷︷ ︸
II

 . (D.2)

We will integrate I and II separately. First, however, we must find a way to eliminate the unknown zm.
To do this we equate (5.40) and (5.41) at the point where the viscous and power law regions intersect, i.e.
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z+ = 11.81≡ z+
m = zmρ̄u∗/µ̄.

u+(z+
m) = A(z+

m)B = z+
m

A = (z+
m)1−B

A
1

1−B = z+
m =

zmρ̄u∗

µ̄

zm =
µ̄A

1
1−B

ρ̄u∗

zm =
(µ̄/ρ̄)A

1
1−B√

τw/ρ̄
. (D.3)

We now have zm in terms of τw and otherwise known values.
Integrating section I of (D.2) we find∫ zm

0

τw

µ̄
zdz =

τw

2µ̄

[
z2]zm

0

=
τw

2µ̄
z2

m

=
τw

2µ̄
(µ̄/ρ̄)2A

2
1−B

τw/ρ̄

=
µ̄A

2
1−B

2ρ̄
. (D.4)

Integrating section II yields

∫
∆z

zm

A
(

ρ̄

µ̄

)B(
τw

ρ̄

) 1+B
2

zB dz =

{
A
(

ρ̄

µ̄

)B(
τw

ρ̄

) 1+B
2
}

1
1+B

[
z1+B]∆z

zm

= { } 1
1+B

[
∆z1+B− zm

1+B]
= { } 1

1+B

∆z1+B−

(
(µ̄/ρ̄)A

1
1−B√

τw/ρ̄

)1+B


=

{
A

1+B

(
ρ̄

µ̄

)B(
τw

ρ̄

) 1+B
2
}∆z1+B− (µ̄/ρ̄)1+BA

1+B
1−B(

τw
ρ̄

) 1+B
2


=

A
1+B

(
ρ̄

µ̄

)B(
τw

ρ̄

) 1+B
2

∆z1+B− (µ̄/ρ̄)
1+B

A
2

1−B . (D.5)

Plugging (D.4) and (D.5) back into (D.2) gives

ũ =
1

∆z

[
µ̄A

2
1−B

2ρ̄
+

A
1+B

(
ρ̄

µ̄

)B(
τw

ρ̄

) 1+B
2

∆z1+B− (µ̄/ρ̄)
1+B

A
2

1−B

]

=
1
2

(
µ̄

ρ̄∆z

)
A

2
1−B − 1

1+B

(
µ̄

ρ̄∆z

)
A

2
1−B +

A
1+B

(
ρ̄∆z

µ̄

)B(
τw

ρ̄

) 1+B
2

. (D.6)
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Rearranging for τw we find(
τw

ρ̄

) 1+B
2

=
1+B

A

(
µ̄

ρ̄∆z

)B[( 1
1+B

− 1
2

)(
µ̄

ρ̄∆z

)
A

2
1−B +Ũ

]
=

1−B
2

A
1+B
1−B

(
µ̄

ρ̄∆z

)1+B

+
1+B

A

(
µ̄

ρ̄∆z

)B

Ũ

τw = ρ̄

[
1−B

2
A

1+B
1−B

(
µ̄

ρ̄∆z

)1+B

+
1+B

A

(
µ̄

ρ̄∆z

)B

ũ

] 2
1+B

, (D.7)

which corresponds to Eq. (9.46) in [43].
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Appendix E

Scalar Boundedness Correction

R. McDermott, BFRL

Second-order central differencing of the advection term in the scalar transport equation leads to dispersion
errors (spurious wiggles) and these errors, if left untreated, can lead to scalar fields which are physically
not realizable, e.g., negative densities. To prevent this, FDS employs a boundedness correction to the scalar
fields after the explicit transport step. The correction, which we describe below, acts locally and effectively
adds the minimum amount of diffusion necessary to prevent boundedness violations. It is stressed that this
correction does not make the scalar transport scheme total variation diminishing (TVD); it only serves to
correct for boundedness. Similar schemes are employed by others (see e.g. [76]).

Optionally, the user may invoke TVD transport schemes by setting FLUX_LIMITER={1-4} on MISC
(1=first-order upwinding (Godunov), 2=Superbee [26] (recommended for LES), 3=MINMOD, 4=CHARM
[27] (recommended for DNS)). These TVD schemes are applied during the transport step and each can be
shown to be TVD in 1D under certain CFL constraints. However, except for Godunov’s scheme, the TVD
proofs do not extend to 3D [28]. Still, these schemes do a much better job than pure central differencing at
mitigating dispersion error. If the TVD schemes are applied, FDS still runs through the boundedness check
in case any small violations are not prevented by the flux limiter.

A simple case

For simplicity we start by considering a minimum boundedness violation for density in 1D. That is, some-
where we have ρ < ρmin. Let ρ∗i denote the resulting density from the explicit transport step for cell i with
volume Vi. Our goal is to find a correction δρi which:

(a) satisfies boundedness, ρi = ρ∗i +δρi ≥ ρmin for all i

(b) conserves mass, ∑i δρiVi = 0

(c) minimizes data variation, ∑i |δρi| is minimized (i.e., we change the field as little as possible)

As mentioned, the basic idea is to apply a linear smoothing operator L to the density field in regions
where boundedness violations have occurred. So, the correction may be viewed as an explicit diffusion step
applied to the uncorrected field with diffusion coefficient c:

ρ = ρ
∗+ cLρ

∗ (E.1)

To make matters simple, let us envision for the moment that the density in cell i is negative but that the
densities in cells i− 1 and i + 1 are both safely in bounds (this actually is what happens most of the time
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with dispersion error). We therefore want a correction that takes mass away from i−1 and i+1 and moves it
to i to make up the deficit. We know that for cell i the minimum change in mass and therefore the minimum
correction that will satisfy boundedness is δρi = ρmin−ρ∗i . The operator L takes the form of the standard
discrete Laplacian. The correction for cell i is simply

ρi = ρ
∗
i +δρi

= ρ
∗
i +ρmin−ρ

∗
i

= ρ
∗
i + ci(ρ∗i−1−2ρ

∗
i +ρ

∗
i+1) (E.2)

Comparing the second and third lines, we find that the diffusion coefficient is given by

ci =
ρmin−ρ∗i

ρ∗i−1−2ρ∗i +ρ∗i+1
(E.3)

Based on the third line of (E.2), the correction for cell i may be thought of as the sum to two mass fluxes
from its neighboring cells. The change in mass of cell i is δmi = δρiVi and is balanced by changes in mass
for cells i−1 and i+1:

δmi−1 = −ci(ρ∗i−1−ρ
∗
i )Vi

δmi+1 = −ci(ρ∗i+1−ρ
∗
i )Vi

In this case the sum of the mass corrections is zero, as desired:
i+1

∑
j=i−1

δm j = δρi−1Vi−1 +δρiVi +δρi+1Vi+1

= −ci(ρ∗i−1−ρ
∗
i )Vi + ci(ρ∗i−1−2ρ

∗
i +ρ

∗
i+1)Vi− ci(ρ∗i+1−ρ

∗
i )Vi

= 0

Realistic cases

The discussion above was to provide a simple case for understanding the basic idea behind the correction
method. In a realistic case we must account for multi-dimensional aspects of the problem and for the
possibility that neighboring cells may both be out of bounds. Here again we examine the case of a minimum
density boundedness violation. Consider the cell n = {i, j,k} in a 3D flow with volume Vn and density ρ∗n
obtained from the transport scheme. Let N denote the set of cells containing n and its neighbors excluding
diagonal neighbors (in other words, only include cells which share a face with n). We want to correct any
boundedness violations for the nth cell via

ρn = ρ
∗
n +δρn (E.4)

Let δρmn denote the density change for cell m in N (the neighborhood of n) due to a boundedness violation
in n. We obtain the final correction for cell n by

δρn = ∑
m∈N

δρnm (E.5)

where

δρmn =

 max(0,ρmin−ρ
∗
n) if m = n

−cn(max[ρmin,ρ
∗
m]−max[ρmin,ρ

∗
n])

Vn

Vm
if m 6= n

(E.6)

The smoothing parameter in (E.6) is obtained from

cn =
max(0,ρmin−ρ∗n)

∑s∈N,s6=n(max[ρmin,ρ∗s ]−max[ρmin,ρ∗n])
(E.7)
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